Python for Everybody

Exploring Data Using Python 3

Charles R. Severance

Credits

Editorial Support: Elliott Hauser, Sue Blumenberg
Cover Design: Aimee Andrion

Printing History

2016-Jul-05 First Complete Python 3.0 version
2015-Dec-20 Initial Python 3.0 rough conversion

Copyright Details

Copyright ~2009- Charles Severance.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License. This license is available at

http://creativecommons.org/licenses/by-nc-sa/3.0/

You can see what the author considers commercial and non-commercial uses of this ma-
terial as well as license exemptions in the Appendix titled “Copyright Detail” .

iii
Preface

Remixing an Open Book

It is quite natural for academics who are continuously told to “publish or perish” to
want to always create something from scratch that is their own fresh creation. This book
is an experiment in not starting from scratch, but instead “remixing” the book titled
Think Python: How to Think Like a Computer Scientist written by Allen B. Downey, Jeff
Elkner, and others.

In December of 2009, I was preparing to teach SI502 - Networked Programming at the
University of Michigan for the fifth semester in a row and decided it was time to write
a Python textbook that focused on exploring data instead of understanding algorithms
and abstractions. My goal in SI502 is to teach people lifelong data handling skills using
Python. Few of my students were planning to be professional computer programmers.
Instead, they planned to be librarians, managers, lawyers, biologists, economists, etc.,
who happened to want to skillfully use technology in their chosen field.

I never seemed to find the perfect data-oriented Python book for my course, so I set out
to write just such a book. Luckily at a faculty meeting three weeks before I was about to
start my new book from scratch over the holiday break, Dr. Atul Prakash showed me the
Think Python book which he had used to teach his Python course that semester. Itis a
well-written Computer Science text with a focus on short, direct explanations and ease of
learning.

The overall book structure has been changed to get to doing data analysis problems as
quickly as possible and have a series of running examples and exercises about data anal-
ysis from the very beginning.

Chapters 2-10 are similar to the Think Python book, but there have been major changes.
Number-oriented examples and exercises have been replaced with data-oriented exer-
cises. Topics are presented in the order needed to build increasingly sophisticated data
analysis solutions. Some topics like try and except are pulled forward and presented
as part of the chapter on conditionals. Functions are given very light treatment until they
are needed to handle program complexity rather than introduced as an early lesson in ab-
straction. Nearly all user-defined functions have been removed from the example code
and exercises outside of Chapter 4. The word “recursion” ! does not appear in the book
at all.

In chapters 1 and 11-16, all of the material is brand new, focusing on real-world uses
and simple examples of Python for data analysis including regular expressions for search-
ing and parsing, automating tasks on your computer, retrieving data across the network,
scraping web pages for data, object-oriented programming, using web services, parsing
XML and JSON data, creating and using databases using Structured Query Language, and
visualizing data.

The ultimate goal of all of these changes is a shift from a Computer Science to an Infor-
matics focus is to only include topics into a first technology class that can be useful even
if one chooses not to become a professional programmer.

Students who find this book interesting and want to further explore should look at Allen B.
Downey’ s Think Python book. Because there is a lot of overlap between the two books,

'Except, of course, for this line.

students will quickly pick up skills in the additional areas of technical programming and
algorithmic thinking that are covered in Think Python. And given that the books have a
similar writing style, they should be able to move quickly through Think Python with a
minimum of effort.

As the copyright holder of Think Python, Allen has given me permission to change the
book’ s license on the material from his book that remains in this book from the GNU
Free Documentation License to the more recent Creative Commons Attribution — Share
Alike license. This follows a general shift in open documentation licenses moving from
the GFDL to the CC-BY-SA (e.g., Wikipedia). Using the CC-BY-SA license maintains the
book’ s strong copyleft tradition while making it even more straightforward for new au-
thors to reuse this material as they see fit.

I feel that this book serves an example of why open materials are so important to the
future of education, and want to thank Allen B. Downey and Cambridge University Press
for their forward-looking decision to make the book available under an open copyright.
I hope they are pleased with the results of my efforts and I hope that you the reader are
pleased with our collective efforts.

I would like to thank Allen B. Downey and Lauren Cowles for their help, patience, and
guidance in dealing with and resolving the copyright issues around this book.

Charles Severance
www.dr-chuck.com
Ann Arbor, MI, USA
September 9, 2013

Charles Severance is a Clinical Associate Professor at the University of Michigan School
of Information.

Contents

1 M2 BEgmie? 1
L1 BERSEHL L 2
1.2 WEMNEEHZA . . . e 2
1.3 HERIRFE e 3
14 WCSAT oo 4
15 SPythomf 5
1.6 RIE: MREERSIIERR o e 6
1.7 BE—MEF .« 8
1.8 fFABREE? . . . e 8
1.9 MIBRERRMUIER © oo o o 9
110 fFARTRESSHIEE? . . o o 10
LILZESIZIR .« o e e e e 11
LI2RIBE . . 11
LI3 IR . o 12

2 &R, KK, iH 15
2.1 EHSEE e 15
22 R L 16
23 WRERELEREET . . L 16
24 IBH] L 17
2.5 BREIFABEXNRo 18
2,6 RIB . L 18
2.7 BREIT 19
2.8 BEBE L L e 19
29 FREBBEI ... 19
A0 ERAFHIN . . 20

CONTENTS

0 = 21
22 BIEBEAAIE . . . L 21
2 T | N 23
214 RKIEFR . . o o e 23
205 SR . L e e 24
FAFTT 25
31 T/RFER . . 25
3.2 BEHIBER ... 26
3.3 Conditional execution L Lo 26
3.4 Alternativeexecution e e 27
3.5 Chained conditionals L L 27
3.6 Nested conditionals 29
3.7 Catching exceptions using tryand except 30
3.8 Short-circuit evaluation of logical expressions 31
3.9 Debugging e e e e e e e e 32
310 GloSSary . . ¢ .. e e e e e e e 33
311 EXErciSes . . . v v v v i e e e e e e e e 33
Functions 35
4.1 Functioncalls L 35
4.2 Built-infunctions oL Lo 35
4.3 Typeconversion functions Lo 36
44 Randomnumberso 37
4.5 Mathfunctions L 38
4.6 Addingnew functions Lo 39
4.7 Definitionsand Uses c e e e 40
4.8 Flowofexecution e 41
4.9 Parametersand arguments u e e 41
4.10 Fruitful functions and void functions 42
411 Why functions? oL e e 44
412 Debugging e e e e 44
413 Glossary e e e e 45

4,14 EXEICISES © v v v v i e e e e e e e e e e e e e e 45

CONTENTS

5 Iteration

5.1 Updatingvariables. L
5.2 Thewhilestatement
5.3 Infiniteloops
5.4 “Infiniteloops” andbreak,
5.5 Finishing iterations with continue
5.6 Definiteloopsusingfor Lo
5.7 Looppatterns

5.7.1 Counting and summingloops

5.7.2 Maximum and minimumloops
5.8 Debugging
5.9 Glossaryo

5.10 EXEICISES . . v v v v i e e e e e e e e e e e e e e

6 Strings
6.1 AsStringisSasequence ittt e e e e e e
6.2 Getting the length of a stringusinglen
6.3 Traversal through a stringwithaloop
6.4 Stringslices L L
6.5 Stringsareimmutable Lo Lo
6.6 Loopingandcounting ittt
6.7 Theinoperator o i
6.8 String CompariSOm v v vt v e e e e e e e e e e
6.9 stringmethods
6.10 Parsing stringso e e e
6.11 Formatoperator
6.12 Debugging e
6.13GloSSaryo . e e

6.14 EXEICISES . . v v v o o e e e e e e e e e e e e e e e e e e e

7 Files
7.1 Persistenceo e e e e e
7.2 Openingfiles e
7.3 Textfilesandlines L L

7.4 Readingfiles

vii

47
47
47
48
48
49
50
51
51
52
54
54
54

57
57
58
58
59
60
60
61
61
61
64
64
65
66

67

viii CONTENTS

7.5 Searchingthroughafile L. 73
7.6 Letting the user choose the filename 75
7.7 Usingtry, except,andopen 75
7.8 Writingfiles 77
7.9 Debugging e e e e 78
700 GlOSSAIY .« v v v o e e e e e e e 78
711 EXercises o i e e e e e e e 78
8 Lists 81
8.1 ALStiSASEqUENCE . . « v v v v v v et et e e e e e e e e e 81
8.2 Listsaremutable 82
8.3 Traversingalist e 82
8.4 Listoperations« .t v v i i e e e e e e e 83
8.5 Listslices 84
8.6 Listmethods 84
8.7 Deletingelementso e 85
8.8 Listsandfunctions 86
8.9 Listsandstrings 87
8.10 Parsinglines 88
8.11 Objectsand values L 88
812 AliaSingo e e e e 89
813 Listarguments e e e e 90
8.14 Debugging 91
815 GlOSSAIY . « . v o i e e e e e e 95
8.16 EXercises o i i e e e e e e e 95
9 Dictionaries 97
9.1 Dictionaryasasetofcounters. 99
9.2 Dictionariesandfiles Lo Lo o 100
9.3 Looping and dictionarieso e 101
9.4 AdvancedtextparSing i e e 102
9.5 Debugging e 104
9.6 Glossary e e 105

9.7 EXEICISES . . v v v i i i e e e e e e e e e e 105

CONTENTS

10 Tuples
10.1 Tuples areimmutable L Lo oo
10.2 Comparingtupleso e e e
10.3 Tuple assignmento
10.4 Dictionariesand tuples Lo
10.5 Multiple assignment with dictionaries
10.6 The most common words v v i vt
10.7 Using tuples as keys in dictionaries
10.8 Sequences: strings, lists, and tuples-Oh My!
10.9 Debugging e e e
10.10GIOSSArY « . v v v e e e e e e e

T10.11EXEICISES . v v v v v o e e e e e e e e e e e e e e e e e e

11 Regular expressions
11.1 Character matching in regular expressions
11.2 Extracting data using regular expressions
11.3 Combining searching and extracting
11.4 Escape character
11.5Summary e
11.6 Bonus section for Unix /Linux users v v v v v v v v ..
11.7 Debugging« v v e e e e e e e e e e
11.8 GloSSAry . . v v v v ot e e e e e e e e

11.9 EXErCiSeS . « v v v v e e e e e e e e e e e e e e e e e e

12 Networked programs
12.1 HyperText Transport Protocol -HTTP
12.2 The World” s Simplest Web Browser
12.3 Retrieving animage over HTTP
12.4 Retrieving web pages withurllib
12.5 Parsing HTML and scrapingtheweb
12.6 Parsing HTML using regular expressions
12.7 Parsing HTML using BeautifulSoup
12.8 Reading binary filesusingurllib oL
129 Glossary o e e

12.10EXEICISES v v v v v v e e e e e e e e e e e e e e e e e

ix

107
107
108
110
111
112
112
114
114
115
116

116

119
120
121
124
127
128
129
129
130
130

X CONTENTS

13 Using Web Services 145
13.1 eXtensible Markup Language-XML 145
13.2 Parsing XML oL e e e e e e 145
13.3 Looping throughnodes 147
13.4 JavaScript Object Notation-JSON 147
13.5 Parsing JSON L e e e e e 148
13.6 Application Programming Interfaces 149
13.7 Google geocoding web serviceo 150
13.8 Securityand APIUsageot e e 153
139 GloSSary o e e e e e e 157
13.10EXETCISES . v v v v v e e e e e e 158

14 Object-Oriented Programming 159
14.1 Managing Larger Programsot e e 159
14.2 Getting Started 159
14.3 Using Objects o L e 160
14.4 Starting with Programso 161
14.5 Subdividing a Problem - Encapsulation 163
14.6 Our First Python Object 164
14.7 Classes aSTYPES . . v v v v v v v vt e e e e e e e e e e 166
14.8 Object Lifecycle L 167
149 Many Instances o oo L e 168
14.10nheritanceo 169
14.1ISUmMmMAary v v o e e e e e e e e e e e e e e 170
14.12G10SSATY .« v v v v e e e e e e e e e e e e e e e e 171

15 Using databases and SQL 173
15.1 Whatisadatabase? oo 173
15.2 Databaseconcepts e e 173
15.3 Database Browser for SQLite 174
15.4 Creating a databasetable 174
15.5 Structured Query Language SUMmMary« o o oo oo .. 177
15.6 Spidering Twitter using adatabase 179
15.7 Basicdatamodeling Lo Lo 184

15.8 Programming with multipletables 185

CONTENTS

15.8.1 Constraints in database tables

15.8.2 Retrieve and/or insert a record

15.8.3 Storing the friend relationship
15.9 Three kinds ofkeys
15.100sing JOIN to retrieve data
15.118ummary
15.12Debugging
15.1Glossary

16 Visualizing data

16.1 Building a Google map from geocodeddata

16.2 Visualizing networks and interconnections

16.3 Visualizing maildata

A Contributions

A.1 Contributor List for Python for Everybody

A.2 Contributor List for Python for Informatics

A.3 Preface for “Think Python”

A.3.1 The strange history of “Think Python”

3

A.3.2 Acknowledgements for “Think Python”

A.4 Contributor List for “Think Python”

B Copyright Detail

Xi

188
189
190
191
191
194
194
195

197
197
199
202

207
207
207
207
207
208
209

211

xii CONTENTS

Chapter 1

I 2B REE?

iR — W R ALEEA A RN, MAERIRRIRS, KREIVIAE R MRR— R ER AR
B, ANBIRA RSB AR — D AR S PR, A B BE A N TR EANE B ifE, —H
SRR, RSB ERIX R AT,

TN HEEFPUENTCAATE, REELABRR, NEITH ZXLEH R ABFRAHT
FURZ BN “RABIEE” o TEARLL, WS THENIEEIIATEE, BURTE AW F A T—
A, OE R (P AR GHEHD F—F 4" .

Ty BT 2 LN T RGN AR, BOIFHESINSRS R —MRE RN AT
¥ (PDA, Personal Digital Assistant) , ‘EREBHTRATAERZ R R ZHE,

H’%ﬂﬂiﬁth REFHIERBRNE, WRENEZRTSHENEEMIES, SFTHEVERD

Y “BTIRMAA" , IAEMEINEATEER R, BIRELLH A URIESA TR
ﬁi%iﬁlﬁifﬁo ﬁ*ﬁXE’J%, RN I BLIS R L@ R AL LE R T AR
FIFEW, 2 NSRRI F1H,

B, FIRARNEI =B, BRSNS —, DX MRS T 20, R
EVRRETE RN TR N R AN BRI e, (HE BN T RE T, BFOWIXRREIANE A
HIRIME R, HHENUGTHER, EREGA—HIMERE By, ERN X THITR
T YRR H TR e i AR IR B LB, W BN S R AIFE A S

python words.py
Enter file:words.txt
to 16

NNEEDWBIER” R IFERAL, BRI “to “TEAER=ZBh—HHI T 161k,

What What What

Next? Next? Next?
What What What
Next? Next? Next?

Figure 1.1: M AR

2 CHAPTER 1. AL B2E5wR?

Pick Pick Pick
Me! Me! Me!
Pick Pick Buy
Me! Me! Me)

Figure 1.2: #/7 RTEXURBL

O

What
Software Next?
Input and Central
Output Processing Network
Devices Unit

Main Secondary
Memory Memory

Figure 1.3: TE{F4EH

HELE, HRVHERMBAENERBE, XA ARHREAGERE] “S5HHRIIEN
BE” o —HY¥YRXITHNES, (RA DU TARIRAIRAER GHEND 7, BIEZS
AU R R BOE G IR A SRS, XGRS, RITIEA S, B MmanEss,

1.1 Sl

RAFABNEWAEF RS, TUmERNIFF AR T E, AERYWR SR,
L ANBIER R, AT S RERRE P2 — IO R RAYTE S, fREVHHRALEPDAE H 2%
TREW SRR ZIT LSRRI, SRS [RRITER AN, B R HAT
RESKIH R IRII TR, 1EM RIS LR PR, RO, SIRER T — MK
fF, XANRIFHITRE SR RO VR BT B R A

ISR B IR —REF RAANEM ™, B TEE — N EERIPDARR:

AP EERIFAR N T MRS E WA, TR LERRATRE B A oAb B A I A A RUE 5 15
Bo THAYmE, FIREFR, WRRTEEFIRERAN, SIRES TP RRIREE, R
ZRAELL IR AFTE RIS, BINRIVEE RS RAERE, B\ TF R A E,

1.2 P

SR AE RN G SHRITERAEANE S 20, BATHZE TR~ TR, R
R RENIEE T, AR AP NI

XL A —RoE SR

1.3. HifimE 3

Software

Input and Central
Output Processing Network
Devices Unit

Main
Memory. Secondary
Memory

Figure 1.4: Where Are You?

- FRJLRbEES (Central Processing Unit , CPU) BETTNER “T—Hft4” TfitE
A PE, R EHACEDEREIASI3.0 GHz, XEhEKECPUSMHSIRM30ZIX “F—%
B A? ” o IRARSAESUNARCPULN IR IEIIAZ ¢ 5 R FF R

- FAEHEE (Main Memory) FPREZEMECPURIZIFZEMER. EFESIEELF5CPU
AHET, B2, XAHENLZEEFiEasEREREmEAT,

- WRE)TERESS (Secondary Memory) HUZFSRFEMEEEMN, (H2E L EFMHIREEIRR
2, WBTEERENRRZE, ERTME AN BB T EEE R W W iEe s
BEARINAE, INMEIEE FAE USRS RS es b

- HNE R (Input and Output Devices) fUfEFR. A, BR. Z5X. HHHRN
TSRS, XL R ok 5 B T3 B

- A RZBOT RN RN 7 PISEIES, JBISMERIE B, FATTRT DARE R4S B AUE B
fFESRREE R — D20, MEASRICATRE, WIERESCED, Mg EER
18 HH AR A2 RIS 2 fifi 85

R TARRERAN T BAFE R R A BN mll, XEREANTEEERE, ERENTT
EFR M X B

TERN—#RERFE R, VRE AR A R X B R R R A A A B, (ENRER B, RE
RE5CPUITRIE, HIFE T —PMft4. AN, REHIRCPUMM I, MBFifds. M4t
CIE PN il S

IRTRERAEECPU “F—H 4" A ([EIEREREDISZRE, EATEN, ILREHR
W3fziRkan S, BBXERIRANETR. FEL, ROFURATS FIRRHE S, BA X LERRE RIS
HRY, W5 RS H TR ITE R 2 9.

1.3 PfRgmfs

TEABHAMETF, BOTZRICIIER RN — ARG R ZAH B & —EmERE TN, &
G, IREEA—MRPE, WFERNERN, HEMRERTEMEFEE (FE) i,
HIT & R AR FF

IR S SR, TR SRR B AR RE :

4 CHAPTER 1. AL B2E5wR?

- B, WEERMIEES (Python) A& — MERICANETR, REMSHERMLDES X THIE
SR, Jf BRI THES B &7

- HIR, U, EERENGRES, Bl eFiaRXfas, miREEREE, Rt
HWEAREGRENEL G 1FS REUF AR, ERmAE, TR, oy RE s
HIARI%,

HEBE—-MEEES (WPython) Zj&, REAMPESHMAEIZIES, WJavaScriptdl# C,
MEBRZ L. BRNNGIEES AR ARIIAICAIERE, BIRCEFRMRIFHIIIHE,
B AR IR = AL AR 2 AR B,

PythonATIRCAIMA TR, (AZAES H—LEE BRI KRR — D 2RI, MR EE
%o WHIRERLBII S 1E— e, JoRREP R TIRIERE, RahE W RNiERr, BRI
GHEERNIEF. HiRE—EKT, MERT B CHREREE, BRIMAMERX M, @i
WMERFRRE, —BERHIXMEE, mERER— Mtk EEHAEIHERET,

BAIMPython B FPRIAIC IS YRS, 55— IRBIIERT, — B0 SRRt S A B T

1.4 L5471

HAKESARKZ, PythonANaiCEESLpr bAHY /D AP “WIL” 9 “REF” , &
I2PythonH BERRE AL, X FPythonki, BRI EIaC, &1 aE
—NEX, FTERERN, fRECEXMRICOyER, TeadEFah, B8, KR
REfE I Python IR B TN R4,

MEERESCETE, BATNGR— U S — LRI, bean “40R” 0 “ER7 f1 &
K7 o BIBUENARIXEAEEIE, EMMBENEER, BRI ERHRRT, 2
FkRyl, “HAEEZRNBLHCE KM, 7, TMASEMTEIFTRER, e
AIEMINE, 7 XREFEERES T B RRET, R ARG AL AIES
BHRET

Python R 41 :

and del global not with
as elif if or yield
assert else import pass

break except in raise

class finally is return

continue for lambda try

def from nonlocal while

X AL, PythontWIZFERZ T, YUIREE “try” , Python&XZILZEHEHIITLry,

JEEETN RN AXERE T LENWERZE. BIE, BIMNAXEELSPythontif GRIZAR

M) o #PythonBiFRMAARENEN, EHZRAEMS | SHEERMAITLAT
print('Hello world!"')

X TAE S — MEEEWRI PythoniEfl, FRAINIAFLIKEL print 773k, JSHIER—C

RFFFE, FH5ISHEEk,

thttp://xked.com/231/

http://xkcd.com/231/

1.5. 5PYTHONXiE 5
1.5 5Pythonx}if

BAELERE T Pythoni—MAILE — M SIER, # FRHEZE TR S Pythonxtili, ik
BA ISR = $HE,

LPythonMiEZ i, WBASAEHEN L &HPythonfifh, ¥2UAE3Python, ABAENL
4, #WEE www.pyde.com, R FHPythonfEMacHWindowsF%: FELERE I
LRI R, LT AIREE TR M, #iApython, Pythonf@Redis 2 HMNE
), WRATR:

Python 3.5.1 (v3.5.1:37a07ceeb969, Dec 6 2015, 01:54:25)

[MSC v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.
>>>

>>>" URMFFORPythonfi@REaREIR, “URA B N —F (T 4? 7 . PythonC&fESLS
TRAIE, R ZERIZ ERUPythoniE S, KiL—PHiE,

BABIF, R Python il & BFERIRTCE A F— A, BB FHLERIFRERTE (05
) o FARE—MEBIZHEIREN, BEMXDRERIERA T EANIE:

>>> 1 come in peace, please take me to your leader
File "<stdin>", line 1
I come in peace, please take me to your leader
SyntaxError: invalid syntax
>>>

B RIHGH AR, BRABRR BORE, BRI ERATESERFRIAR, MiRLH
K, RIEIEIRBAEK LR, iRz,

SEBHE, HRATRRE TR, KR TR0, Eil—R:

>>> print('Hello world!")
Hello world!

XREERTERA, B SMAITIESIE:

>>> print('You must be the legendary god that comes from the sky')
You must be the legendary god that comes from the sky
>>> print('We have been waiting for you for a long time')
We have been waiting for you for a long time
>>> print('Our legend says you will be very tasty with mustard')
Our legend says you will be very tasty with mustard
>>> print 'We will have a feast tonight unless you say
File "<stdin>", line 1
print 'We will have a feast tonight unless you say

SyntaxError: Missing parentheses in call to 'print'
>>>

http://www.py4e.com

6 CHAPTER 1. AL B2E5wR?

LHEEIE BRI, REWRESHPythontE SR RIE T —NMER/NYHHR, Pythonit
XBRTFEHKT

R, PRAIZEORE], Python BAIERWEASHA, BEIEIEE LIRS, HAMLEE, i
FRL L P IERR TR,

TERHMBEN b, SRERMATREFRN, Python®fE/RFIHMARR R 2 FFEZHE A,
PythonZBREFoE & R A TEHIT FEN /77X, FERBEEE LB, REEChPython
PR — G, SORBIRE P AT S,

S5 5 Python iFREERINEE — ORTE <71, RATREZRIEMN T ERL 51X BERE R “F
A

>>> good-bye
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'good' is not defined
>>> if you don't mind, I need to leave
File "<stdin>", line 1
if you don't mind, I need to leave
SyntaxError: invalid syntax
>>> quit()

REEPHTNMEFE TR, BT if 2REY, PythonBIIRE TR ANTENERLAT
2, BAITF BRI,

ERPythonii “FI” MIE#MITIER, EROIENXIHETRT >>>" EHA quit(), JFHXPHS
IXATRERAEE —LElfH], A AT k& A RHATRERIR L,

1.6 AKif: MRS mikds

Python2—Mwits, BEEROVEMIEASHTES, A THRRGARE, HtSR0E
Sfuffi: Java, C++. PHP, Ruby. Basic. PerlPAKJavaScript®, CPURRIEEFHRREMfR
Ef—FERIES,

CPUREMIRINIE S IR WNERIES . VIsVESIEEMER, HAW, WmEERIERLH, ©2Mm
OFI1&H AL :

001010001110100100101010000001111
11100110000011101010010101101101

BANBNES REELKRER, JHML, HEMEEEPythonE 282, Fibl, ROEEF
HHANERIES Wi, MR, EEEMMEIES, BF R RE % PythonsJavaScriptiX HEH =4
B, XERRESKEFRERIEES, HRHCPURIT,

FEHLERE S RA T H EARES:, FrDARRETEAFRAUEE 2 M, RSB S ST T
A DTEARRH B RS, EIdTES — SR L ERRRIR RS, SEEHR RN,
AR MEERX AT ENEINIEE SR,

IIEIE S RIS RRAT AT (DRSS 5 (2) miFEds.

1.6. Rif: RS RIFaS 7

R BB RS R IR, RIS S R TE S, Python /2 —RifiEfeds, MR
HRITPythonf, #A—1TPythoniEf), Pythonmi&szRIAHE, HMFHESIERITMAT
— 1B,

PythoniBHyriA —LEth 75 £ 4fPython, REEPythonitfE% FaMFIM—L4dE, XML
FEABIRIOE— NEIRRICEE, X2 G AT DUEIIX AR IRBO BAEEE T, FRAIE
MR (variable) RRFEEMHEHIEIE,

>>> x =6
>>> print(x)
6

>>> gy =x * 7
>>> print(y)
42

>>>

EXABITHR, FRATiEPythonidfisklte, FHem LA X, AR, T A
Python EZITASX MK,] print @mAFTEIE, # Rk, RONEPythonfRBUER x M9
EHETRL7, AL ERAHT AR v, R5, FTENHAS R y (02431,

REBAN—RHBAT —1T@<, HPythonk HEA A —MEMFS, JEHEANERRT DAIKEHTHIE
AIREER, PHAERAIBRE U— AR ENMARXHIRFRE, X215 HESE — MR
HIZ1TIE,

W EFOR, MR RIABURH TR B ARG, M 2B MEFE— DX, KeE
REIRARS R R ERINLEIE S, REgmiEdeis R ENLERIE S E — S F DS SEA
7o

WRARMEA Windows R4E, XLEFHPUTHNSESEFETF TR “exe” 8 “.dll” FH, 25
REXZ “FIHUTIY M “BESFIINENE” o fELinuxfMacH &G IXFENE SRR R X
BARAHITH,

NSAE AR AR TP TT — DATIT X, IR RSB B A

“7ELFTATATAT@T@7@"@"@"@"@"@"@"B"@"CT@"AT@"@"@\xa0\x82
“D"H4"@"@"@\x907]"@"@"@"@"@"@4"@ ~@"G"e("@e$"@!"@"F @
~@704"@"@"@4\x80"D"H4\x80 D H\xe0"@"@"@\xe0"@"@"Q@"E

~@~@"@"D"@"@"@"CT@ @ @ T A"@" @ T\x81 D H T\x81"D"H"S
~@"@"@"S"@"@"@"D"@ @ @ A"@" @ @ A\"D"HQVhT\x83 D H\xe8

PSRBT S H AT S, I EERRESMAIED, REW A PythonslCIXMENT MM ST
e

TR RS S HRIEARAIINIS, IREIZN Pythonfi@REER A S A T —L T, RRIZARFIANE 2
R AESER? RAGFEES SHE SAEA “python” , RERAETHA4?

PythonfUfiEReas 2 HCIES WME M. RA] LAViAlhttp://www.python.orgili, &FPythonf#
RERRIIRAE, AR BESREXEREAEHZ R DK, PythonA S22 —MEF, EHH
BB, MR (SRR TN L2245 7 Python, SEFR2 L —m e
Pythonf2 /7 UM a3 X+ NEIWRIH EAR S, EWindowsH!, PythonFIHTHINLERASRAT
REALT DA RS fser:

C:\Python35\python.exe

8 CHAPTER 1. AL B2E5wR?

BEN—HPythonfefF R, 1R AR—EMNFRENE LIRXE, BE—IFE, €L RRREZLE
I, TR ESH,

1.7 %54

fEPythonfiRERHHI A i SR A3 Python hREIER 4r A7 3K, (EREBCR XM 2ORMRE

AR

ZRAER, FRATHE ORGSR B Pythonf& @ F I — M XF R, XA EFRAMA, —RmE,
Pythonlfl4PA . py 44t .

LPITIIA, IR IR Python i@REARIIA S AF 48R, 7EUnixskWindows @&, #RA]
PG FHEXFE#{Tpython hello.py:

csev$ cat hello.py
print('Hello world!')
csev$ python hello.py
Hello world!

csev$

“csev$” BIRERGHIRTE, “cat hello.py” BEE “hello.py” XHMNZE, HPEET—
FTHTEN A BB Py thon &%,

BATEAPythonfi#Reds, HIFEM “hello.py” XHFHIRBURMREG, mMAZHGSITREA—1T
—1THIEAfTPython g,

&M, REVEEPYythonfEBXFAREM L quit(), PythonfEBREIRMAI AR, FIASC
HREERECHEL,

1.8 {razfER?

FEFRIEAE R, SER TSI —HPythoniBAF5, MERAEERA hello.py M4t
MR, PERETRBIEFET, ERHAR, NEMEEHE L B, ER—
APythonf2)¥,

BB AT DR RRIN A, RIGHE BRI REIIRT, XA R 2 R P A
775

%, PRiExtFacebook ERAMHEITH ST E TR, H EIREOLERE FIEZE — AR5 ¥

R ARAI R 20 YRA]DATENHIREE R, SRRSO, WS ILAIAE, HIXFH
BHRACIN AT BARA 5 . fRtA] OB R 5 Pythonf2 5k ek B HER AL BIXAMT S5, IXFE
R, FIRRELA] DA HAL G BB T,

RSV, FBEUATNE, REXRTANVNIM—WERSOR, SHHIIREURZ N8I, H5
e H R EL

the clown ran after the car and the car ran into the tent
and the tent fell down on the clown and the car

1.9. HREARFPRI/EIAR 9

RIEER—T, RRZEMEZNEE TR ZERIX MG =, HEMIE, %#3JPython,
MW — M PythonfBFRFH TS, EHLATEFRIAREGZ,

—PNEFHER, KEAT T M SRR R RAE A S ER BB 1 DL B, Begm 5
KTe, B, BREXMEFAIR, IZXFEREAT DAY &R — L2 H,

name = input('Enter file:')
handle = open(name, 'r')
counts = dict()

for line in handle:
words = line.split()
for word in words:
counts [word] = counts.get(word, 0) + 1

bigcount = None
bigword = None
for word, count in list(counts.items()):
if bigcount is None or count > bigcount:
bigword = word
bigcount = count

print(bigword, bigcount)

Code: http://www.pyse.com/code3/words.py

REEAFEABEPythonit Al UEAIXNMET, RTREEREIARHE 10552 BRI 2
PythonfwiEHiR, METERRARF, RFEAXNMER, RSHNT IR,
IRBREENATESR, MAFEMARE, RFE] words.py XMHFHITE, SERLATEL
Mhttp://www.py4de.com/code3/ N IRILFHIETT,

RARBIZE AL T Python USGX TIEF IR (REAF) 5, BBRFR) ZEHEHEA
A, @I PythoniX [EAES, BATALHAMKELFS (BFEF) |, XAEEMALER
fixi 2245 T Pythonf ABBRT BMERE, S b, ZZmAUTH A ZEPythonzeif, 2l
Python5 X 7538 o

1.9 FRFEFR/MER

FEETRILES, HNGIFEIELPythonfiRIL, AL, BOgEM, MHEREN, i
F=# S Pythons# REIIHRE, DARAMALK X E2ohredl &l ok afg A AR 7,

TP HAIE EE L RB RIS, XS UE N PythonfE/?, TR E —hdmiE
BE, MISESEEMES, MERNAERED.

BN O SN ZRECEURE, WIDURMSIE ISR, BE AIERMEIEAR, Huanzere Xak
GPSEREEURE, TERNIRMIAERT, AR i m AR,

i HREFSERERERE L, S REEDXE, HEA DS, WiHHESRENE R
BREAERC T

M AT AL A B RE, — AT,

FAPUT SUERRPE ST EE B RE TR 5,

http://www.py4e.com/code3/

10 CHAPTER 1. AL B2E5wR?

HENT EEHIT-EIEM, XEEAEBRITIE RSB LR,
HA WS4 452, HNENGS, ZEEEMEFIREREEEEAIXLEES,

RUTER KA T UETREASME, AMFELEH MR L, ZHtert, ERRFALIL,
RS A — IR o 7o iR “ZR” BB AR, HEREEATT
£, RAGEX A HBIR,

BrT “HEA” BRAZHh, EHEMESSG R LA R T R KA FTA R,

1.10 fltavffexiig?

METE 5 Pythonff X iE-H el UG E], FA148 5 Python RN AR ASHE, R/
= SEPythonHFHITEF .

FIHFEBHEINN, PythonNEEATILH, HAW Nz, WIRSHANER, 5APythonF
EEREEDAFE, HEMES D AR M AR —ASIRSE, BT RAMEIR,
PythonfB4E AT EANG FAER FAURERE, HEMIIFRZ N “REHE" KirERAl,

>>> primt 'Hello world!'

File "<stdin>", line 1

primt 'Hello world!'

SyntaxError: invalid syntax
>>> primt ('Hello world')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'primt' is not defined

>>> T hate you Python!
File "<stdin>", line 1
I hate you Python!

SyntaxError: invalid syntax
>>> if you come out of there, I would teach you a lesson
File "<stdin>", line 1
if you come out of there, I would teach you a lesson
SyntaxError: invalid syntax
>>>

5Python&it &t aifit, EHR—ATH, REHE, FHEREFENIEENIRRS, ©
AUEERME BB RIRETZ], (HIXHZPythonfEFk#H), PythonEH THMAMANE, BHEZ
NERIRE AR R AR R,

Python® % — R, THMAEMR, HEEMMRDRSCHEIE, —HEREIENREC>>)EE
R, SRR — LT REIRI AT, YPython¥ijE: “SyntaxError: invalid syntax” (&
PR TROEE) , ERBEREREN: ROIFR T4, EERARKIAE, REAEIRE
LRERFVUE(>>>), 7

YREFEIPEORME S, (RRBEIIT =M — BB R IR

1.11. %32k 11

BEHDE XRIRBEE MR, RADMR, EEERERE, RER T Pythonfy “iF
IE” BN, Python& RECFTAEHS BN REB BRI — AT 245, R IAEE IR IE—RR
FHIZ, ARG PREERIEIRATREN T PythonfRl IR AN B 2 /. FFLL,
Pythonfi H FIEEFR A B A R UR IR AT Ao

BHED EREREEEFRHIERERAONHET, B SIEUXRFEHIR, ZEHR
= NERBIFRZ, “TOPKHEK, REREHEE, EREAE, ARk
ko

BXWER EURREEFIEEREELZEES, B2 MR, hatEll, BFrEaE
i, (HERREMBIFEEEMEE, —DMERRBIT, WRRAE AERELAE—REH,
“LEGERIR MR O, R, dkEUE—E, REATILE R
W, BEMENRIL. 7 & TIRKINE, FREOEATREIE, IEE— RS, £
RO, HEARSIRENRS, ~ A5, URE: “ORMIFEINTHS e it R A 5
T2 AN “ERRRIGIMERIITAE, BIETRRL, AR, MEUE—K
B o N, s “IEEIR, BATRITT RS RTEIRE LR, HEPEEE ST
— MM, AR EIAIE SR, 7

HE—T, NTHAERX=MER, Python UBTEREARS I IRIRIZ R ERh 34017,

1.11 232K

HEIRABN, NOFaan R R MR RER BN, AEHL, N EEBUER, SKILE
HAEER H— LR 2R &, XARM AR, 16 H BIRHE, AAREWLE AR L REIRER
KRR F; FASEICFERINT, WAIF ETHEIBRE,; M LERERIE B S48, MGt —
AT, X R RIS AR IE R R

AR EIRREE BetIE S Python, FrDAIRAISTEE TORILE BN 2 AT,

RS —THIES RN AR ER, R sEMEIzH B, FILATRERA IR
—ERRER, BRINERMEE RSN E, BlZmatiEs—alest, mh T L RES
5%, BNES—MHER LR B, MTARNRE REIEN, HEMRESM—I TR, Hikdry
REMERE, RoE2 AT AR AR 77 (S, W DARTE SRR, i~k 5d
B, ATRANYE —EAMEERING, (EHAEEERITE AT, XA BT A R mIE
“E” o RUEIRIEFER BT BRORATREA L0, (L@ Mz aiiIme, a3 Eil Aifl
WIERS], IR RREGEBGRIZ .

BERELIFE-NREESN, S8 - SESRITRRIIN R, XRURIRTE 7R R DR — st
a0, RERBRTILY, KIMIRERFERE S LIRS,

ISR LB RRA R, B RAEERIARN W, RE—T, 1100, EEFR, MK
N (EIFZIRE) B0 TR BRI, AR5, DERRRLE SoREER M, &,
RIE, —BRMASRFZITREIMS, ELER, RRLZImEARRIEEAR, RN
REHRE SN RRKRZET,

1.12 Kig#

el F2P P RIERIR,

FPULREBEES PR TSRO, (19 E R EERIT, thARy “CPU” s# “AbPt
%g” o

HiE USPESWE IR —RIERFERRIIES, NES T ks,

12 CHAPTER 1. AL B2E5wR?

RRES BT AKREMMmERNRMEES, WPython,

RHLN PythonfBRESRM—FERTE, ATEIRRTEMAGMSMEE,

fiRe SRA—IRERE— T BORMIT SO S RE Y.

RFEE —MEEETHENRITREIES, Wiy “PIERE” 8 SCHRIES .

BLEMIS BRI RE RS, PEEAP LR (CPU) HUT,

TRy FEEPEEE, KHREE EEESRNER SRR,

fEdT AERRFTIRIESEE,

RHYE RER—NEM, BRI RRZER TR RIBAT,

printtA% #EiEPythonf@RESRTE & L B R BRI,

PSR SRR, SEMOUTR, BRI RIEE,

By HRET RN — s %,

PR BFER—NHE, SRR

HIUAERRSY FAERRPEEE, RIEAEEIEASER, MBI AESSAEEE A H L F S
18, SHBNTERERR NG T E A KN ER, URTINTESE,

B BPRE Y BFEENERS, B .

BRI, IR IR T A R R R,

TS R H&ESES .

1.13 S8

SJR 1 THRNLAR R B B BRI DI RE R (T 42

a) HPUTIEFPRIFTE HRAZE

b) 1E IR _EARZR M T

o) KRR, MAERERZEFEEEAZEK
d) KA PRI

S 2: fHasRigR?
S 3: i AR ARRE AR A (T A X 5B07?
S 4 RHEE—NEHE PLEAED” 2

a) Pythonf#Rea%
b) &
c)

SR 5: TR TSR R :

>>> primt 'Hello world!'
File "<stdin>", line 1
primt 'Hello world!'

SyntaxError: invalid syntax
>>>

S 6: PT AU RPythoniBf)fE, A& “x” 7 T{Mib?

x = 123

1.13. i 13

a) LA E AR
b) Efrfikas
c) fiBh s
d) BNIRE
e) fithigs

S 7: MR SR 42

x = 43
x=x+1
print (x)

a) 43

b) 44

c)x+1

d) #i58, Fohx =x+ 1{EECE LRl

S 8: DAAPELL, MRREDAT Y. (1) fhaRACERSR, (2) ZTFIEER, (3) MIBNTRIERS, (4) BN,
1 (5) Fthiees. flan, “THEALA A RAL B BT TR ERAL” 2

S 9: A fgR— A “TEIEEEIR” ?

14

CHAPTER 1. AL B2E5wR?

2.1 fHS5FY

i 2REFELEN—MEAESR, O—NFER—ME, Bk, BIEMBINEEL. 2
“Hello, World!” .

XUAEE T RRIMI: 2255, “Hello, World!” 2545 (HE&— “&” FRmE
) o BEOATRTEETES IS4, IR (DURRREER) ATDMRES [SRIRAIEN],

printiBMWAT CATENEEEL, A pythondi & B ENEREES,

python
>>> print(4)
4

YASAHE —MEJE T WRAP2EEY, AT DU R g okifas

>>> type('Hello, World!')
<class 'str'>

>>> type(17)

<class 'int'>

SmB0, FREETFstrdf, BEEFintdA, FEERNE, W INSURNETE AT
(floating-point) #MRFER, FAfloatZA,

>>> type(3.2)
<class 'float'>

Mo, B 17 F° 3.2° XFETWMEEINR? HERGET, EENRFR B
%EEO

>>> type('17")
<class 'str'>
>>> type('3.2")
<class 'str'>

15

16 CHAPTER 2. A&, FikX. A

BT,
BABRIEFN, RIS RFZmEN—MNES, fln, 1,000,000, fEPythonH
AR INEEIE, HRXAIEREEN:

>>> print(1,000,000)
100

A, XIRARNZRATHER ! Pythonill, 000, 000f@RERL T — ME B/ FRAVEEIFSI, ©it
ZEROMRUATENHR T, HhIAl 2 0 B

RERATERIRE —ME ARG T (REINETT, RAEAHRER, EREHEEM “IE
SOE

2.2 TR

IIZIE S IR ARHIIREZ — R BIE E RAIRIZRE ST, R RA— MERI BT,
WtEL 15 f FH o QI A2 B 6 HUE -

>>> message = 'And now for something completely different'
>>>n = 17
>>> pi = 3.1415926535897931

RXAGIFHPE T =NREER, H—RIEUR T RRES L Enessage; o AIBMHE
BUTES T En, B=FE0RK 7 KOLP)ERESR L Epi,

RAT DA TEME AR 2R — ML B HE:

>>> print(n)

17

>>> print(pi)
3.141592653589793

3

2 B R AR TR EATR A,

K

>>> type(message)
<class 'str'>
>>> type(n)
<class 'int'>

>>> type(pi)
<class 'float'>

2.3 ZRAHKEY

R B 2EFA R ARRY, HHAERAHHEHERR,

TREANRKE, ATDIRNEESFZRMET, HEAEUBTFI L, ARG FRE AN,
HNGERIBLEEY (ZEREABER .

2.4, 1EA) 17

T (O FIDHBIEZREAF, EEEMESEZ MANZREAS, HlU, ny_nameflairspeed_of _t
TRAF R TRHZTT L, ERMN—BBRIXEmA, BRIFRERS A ERPythonF
(VR

WRFEAAGIENZERY, RL2IE2]— MEERHR:

>>> T76trombones = 'big parade'
SyntaxError: invalid syntax

>>> more@ = 1000000

SyntaxError: invalid syntax

>>> class = 'Advanced Theoretical Zymurgy'
SyntaxError: invalid syntax

76trombonesE ANAENL RS, FANTRUKFHLN, more@t2 AREEN, FAEES
T IMREENTC, Nt E4 classiETENITE?

JRETFET, classZPythonfk#T, Pythonf@REdiifCRFIINGIFRF IS, B, %
HFARERFE RS,

PythonfRtf T 31/ 5

and del from None True
as elif global nonlocal try
assert else if not while
break except import or with
class False in pass yield
continue finally is raise

def for lambda return

IR DATETFIOF B — 10, WIRMRREERAE — DB RIRGE, MIRXAREN 4, BakhE—
TERGERX IR R,

2.4 bty

4] 2 Pythonf@RE SR REB HUTIIARID R IC, BATEE WL HMIER: printflassignment,
YYRERZ ERA A —KIER, WRSMESPUTEIFTEHEER WRAERIIE) .

—NAAEY B S —EBRIER, AGEE RS, SEREMEERFIRT, —f—
ét“.o

n, DAUTRBIAR:
print (1)

x = 2
print (x)

P AIEE R

1

Hrh, WEBARAER R,

18 CHAPTER 2. ZZ&. £ixK. B4A)
2.5 BRMaENZ

BREA BRRSENRRAS, flu, imk5Rg, SEFRENERNZEN R (SIZEE, *
HiE)o

+, = ok, R ENBER SRR, . . BRFEIRAMIZE, EEW RG]

20+32 hour-1 hour*60+minute minute/60 5%%2 (5+9) *(15-7)

HFRILIZEMM S, Python 2.x fRARM Python 3.x MiARH — X4, 1 Python 3.x /1, BRik
MR R — MRS

>>> minute = 59

>>> minute/60
0.9833333333333333

1€ Python 2.0 #, WNREEUHEER, SBEI—DEWEE (0.59, SwakWako, BEDF)
>>> minute = 59

>>> minute/60
0

PHEAE Python 3.0 2R LI —FERUSE SR, ZEEAMMRERIE (/) B50 .
>>> minute = 59

>>> minute//60
0

1E Python 3.0, REEGHBRIVEE R BARATIERIBEE, FRMER RS ISR,

2.6 FiEAX

Tk BH, ZEMBEFNHS, EASAUE—NRIAK, BRI, FrPl FE#EE &7k
ik (L ExCHIRE) -

17
X
x + 17

WRAEZ BB AN RIAR, a2 e HEE R TE ok

>>> 1 + 1
2

R, E—MEFH, REXAGHREMILMEN! XEVNEERSREN— M,
S 1: 7EPython @RS H i A\ THHBAHERLR:

HoXH oo

+
= o

2.7. iBEF 19
2.7 B8

L PRIEAFHAL NSRRI, BEIF R ICIHNRIE, N TRFEIEETRH,
Python#REEAIZH I, B W55, U7, Flr. " o

- S ERSBREMER, FERHIFRE I ENTIERE, 55NNERE R TE
B, B, 2 % (3-1) FT4, (1+1)*x(5-2) FTF8, AR, [AHESHERAR
TIZHEER, BERAPERIEMTE, Fl, (minute* 100) /60,

- wER (RTT. 7)) BUERUR TS, B, 2%*«1+15F3, MAJE4, 3x1xx3%F
T3, mAZ27,

- IR AN BRIE BEARRRIESCH, ik Ak R AMERIRILES, BRbRE TR, AT
PA, 2%3 -1%F5, MiAZ 4, 6+4/2%F8.0, MAZS,

- MRMEERIB RGN ESIGRIIF RIS, A, 5-3-1%T1, MAE3, %it
H5-315%12, AEHREL

LRREFE B EIBUFIN, 185 6 SR AR MEERIZ R,

2.8 Bia®

B RSB, SEIREE - DNBEERLE A BEEIRE, £Python, HIZRTH
Bas () #R, RESHMEET—H:

>>> quotient = 7 // 3
>>> print(quotient)

2

>>> remainder = 7 % 3
>>> print(remainder)
1

n, 7HBFRRREIRIR2, REEL

BOZHAER S, 286k YL, RA] DURT — DECRERER) — MCERR, Wy RIS SRS, TR
L xREBTy BERR,

Fh, BRIBE WA DR — MU A IR, 280K, <% 107] AR B A 3 i — i e
(BL1OAEE0 o W, x%1007] DAFREER AL IR T,

2.9 FHHHIaEAT

ms + WA DMRETATE, [EERXNENZHFEMMENS X, T2, BEICTHHERER
B, Bian:

>>> first = 10
>>> gsecond = 15
>>> print(first+second)

20 CHAPTER 2. A&, FikX. A

25

>>> first = '100'

>>> second = '150'

>>> print(first + second)
100150

XMEFRRHETRZE100150,

2.10 WERHP A

AR R P S AR E, PythonfZfit 7 — A EEIMinput, FRIKER
BEmA HEAIX RN, REEEIET, SHAPNEA. MAPE T (ReturnsEnter)
W, BFRMEEIBT, inputhis AFAFaE R E - i A RE,

>>> input = input()
Some silly stuff
>>> print (input)
Some silly stuff

TEERFAPRMAZH, RFITH—FERIER, SIFRAPHRERMAL(T 40 R DUEIL/Einputh
A DR ERIER A

>>> name = input('What is your name?\n')
What is your name?

Chuck

>>> print (name)

Chuck

TORIEGERRN \n FoRBUTH, ER—MATENHETT, HITE T TRRRTRT, ZE—
X, HFEARNNERERRIBEHN T,

RBEA AR, IRAT A int O BECRIR B Fe i i e B -

>>> prompt = 'What...is the airspeed velocity of an unladen swallow?\n'
>>> speed = input (prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

17

>>> int(speed) + 5

22

B2, WMRAFEARNNRHEFHERN TS, TRAmSREE:

£Python 2.0%, XANH#MUraw_input

2.11. R 21

>>> speed = input (prompt)

What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)

ValueError: invalid literal for int() with base 10:

ZJa, BATR% SRR,

2.11 IR

YREF RGO MR E Z6IN, FSEE R, EXREFERES, &%
BRIENMEX B M AR, SENTAERFEST,

NRGIXAEE, FERFABEPMABRIES W, REREXBRAREIER, KSR —MREN
TR XEWMOTER, EMU#5ITk:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

EDXAES, RS 1T, REAT DEEE IR AT AR
percentage = (minute * 100) / 60 # percentage of an hour

M\#STHREIX—THIRG, RRERESERRE, BITRRNRE T A AR,
RS B RRHEEA TR AR A A, BT DAS BRI e BRIt 4, (B

REARNE, BE-TIhA.

NEIXATERMEZ RN, &HAEM:

v =25 # assign 5 to v

M RTINS TERNER, Raaiths A E R R:

v =25 # veloctity in meters/second.

T 5 R B AR IR D IER R, (AR EBAUNRKK, M EEAFRE AT E I
T, FTDATR AU B,

2.12 BiidZRmAL%

NEGEEA Ran 2 A A, e R AR, VR AR TR RIE 2 A IR A

BN, MRERBHIANETFIMG B CNEPN, NWEENGAATRESESIRR, §
W, FE=MEFATERRESTESL R LR R, (2 AR Z AR,

22 CHAPTER 2. A&, FikX. A

a = 35.0
b = 12.50
c=a=x*b
print(c)

hours = 35.0
rate = 12.50
pay = hours * rate

print (pay)

x193z9%ahd = 35.0

x1q3z9%afd = 12.50

x1q3p9afd = x1q3z9%ahd * x1q3z9afd
print(x1g3p9afd)

Pythonf@REZR B EIX = MEFH, WA REE—FN, HE2NTFAME, FSMERTiIHEZ
JEHA AR, EREBPUREENZE - MEFNEN, XRENZERF RIER TREBRRET
BEREHS YT RS,

R B@AAENRN “BNcBREMAIR” o BhcAdTF “Bhid” Mg, im0 http:
//en.wikipedia.org/wiki/MnemonicHE EHLZHEBICZ, EEES TICICMERS%, BT
BATCE Y PAIEIX MR EN T 4

XBERKAR, HHCEEMZER - NMNIERE, Brlfeth Sy & M HEmA, X
EHTYIFEE A RER A I 2PythonI33MARA K7, WMRTELFUERKZHIRMEIIAIE,
MmN RS EESBEPythonlBEEM—E85r, MNYI¥EEEMR LERTH,

R TR PythonRIGSZEL TIE3R, TEINEIESRSENL, XEZHREBRXMTRIENS
X

for word in words:
print(word)

RERAETH2NE? LEFE (for, word, in, %) ZRET, MERZEEAIE? Pythonk
iR AR B AS 5 I RSB ARME 7 ki RS AR R B o S A D R B RS, TR 8 2 AT A
FHAR A 57 23R,

AR A AR R R

for slice in pizza:
print(slice)

F7E3 AT AR 5 B9 IR B ARG AR T T £ 2 Py thon i SCRIFR B 77, IRES /2R Fp e PR A8 i
%o PythonBARANREFME pizza (B Fslices (B W& N, BEARUIKEG AT AR Z
BUXAPNERELT,

B2, WRBAINEF LR LR EREEIR AR P E R IANIE, pizza M slice BZIE
WAZILWERA T, EEENENERAMESRERT AR,

AT ZA, IWEABREANRET, HEERPPEREIE:

word *in* words*:*\ *print* word

http://en.wikipedia.org/wiki/Mnemonic
http://en.wikipedia.org/wiki/Mnemonic

2.13. K 23

IXEAHEY, HPythonE XHER BT (for, in, print, f :) , BFRIEENEEH
(word Ml words) WRZHEMNIMH, RE ARG IREEEAZ PythoniFTE, I BERARRIKIS
ERFACRE T, DULREEEF XA LRBA S5 REE, AR —BNAG, (RS REtX sy
MR B4, MEREET,

2.13 ik

Hill, REAZLHEEERMIZEERT ~MAEERNZES, il class 1 yield, Ef]
RIRET, X##H odd~job 1 US$, BNIEHREENTI.

WMHRARIEEZ RLHIR— ARG, PythonRINHERIGHBEFFINRMZEN R :

>>> bad name = 5
SyntaxError: invalid syntax

>>> month = 09
File "<stdin>", line 1
month = 09

SyntaxError: invalid token

NIEEH RS, HREEIEAGER 2/ DAY, REINEER SyntaxError: invalid
syntax fl SyntaxError: invalid token, MiXM&EEMTAGER,
RHEBEINBITHIRE “use before def; CEMNHEIELERA) 7, WHLE, HRIEZER—DIEKR
AHIEN LR, ZTRAHEAERRS SBOXMER:

>>> principal = 327.68
>>> interest = principle * rate
NameError: name 'principle' is not defined

TEAX D AKNG, BB, LaTeX fl latex 2 A—FEH,
B, HASILMIEREIZEIFE £, than, ZEH 1/27, RAJRESS BRIXFE:

>>> 1.0 / 2.0 * pi

TXFENIE, SURCHTIREEHE, S22 r/2, MRMERAR—#E! E2Python R ER
RERERRMN 2, FIDMERMERT, EHARRE, HRMMSEIRERNRIREER,

2.14 ANigFE

Wt A BT — MERTE,

BB KNS EN R E AR,

IR BEFEIESHER, SEREMERFR QUEMERRHON) BRERF, mASX
TR I PRI TP AL AEART R,

Rl WFREXHITIZE, 28 ME,

24 CHAPTER 2. A&, FikX. A

TR TR, BETAENHSE, FoRANERME,

TFREL REE /NG EUEZSEY,

B BRI

Rty PythonfREEsFRBNTARF R 7. ZEAREMAMRET, W if, def, Al while
%,

BhidiE —RlBhICIZ I T, BATEE A S04 R E A =B RFEMEN N,

BhUas —/izB5F, HESS () R, REDBEEEHRIREL

BENR IZEFRENE,

BREF RREWRISEMN—RIRGT S, Wmk, EEMFAr 8 B,

BRI, —HIZEMN, FREUETEE 2 MEERAIBEN RRIER A RENTT,

B RPN —BRIS, BHaThE, BRI E A REEIMFTENEA,

TR TR R R — R A,

PR RR—RMEH, HAEl, BRMNELNBNRERE (int) , FAE (float) , MF/HH
(str) »

1 BB —MEA ST, —MFS— N, 7] RR AR,

A —MERSI SR,

2.15 S8

S 2: i input HiE —PMER, ERHAPRMALSY, RETEVODE,

Enter your name: Chuck
Hello Chuck

S 3: wE—MEF, ERAPMALNANG, REHEEETE,

Enter Hours: 35
Enter Rate: 2.75
Pay: 96.25

EATE N RO BN R 2 SR LR NG RAL, GRIRIEFEAEAE, TR
—iAPythonN'EH) round %k, & n] ARG SRABIFNAEL,
Exercise 4: BRIZEATHAT T NHEARETE:

width = 17
height = 12.0

HTFTHES-MRENK, FHERZER, KHGERIE,

1. width//2
2. width/2.0
3. height/3

4,1 +2*x5

i FIPython R S B IRAIEE R,

Exercise 5: 5— &R, fERAFMARIKRE, KRR ERIRE, FHATGRITEIH
%O

Chapter 3

FAFET

3.1 mFERA

fi/RFKIEN BEEBEREIRSH—MRIEN, FHEHMHFHZEf==RLEHM2ENSR, &R
FHHENRAITrue, GNREIFalse:

>>> 5 == 5§
True

>>> 5 == 6
False

{r

TruefiiFalse (#1) Z—MRRANE, BTHR/RRE,; BIHRRTFIIH:

>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>

==l MLEISRL, HAMEsH AT

x !=y # = s not equal to y

X >y # x 1s greater than y

x <y # xz is less than y

X >=y # x 1s greater than or equal to y
x <=y # x 15 less than or equal to y

X is y # x 1s the same as y

X is not y # = is not the same as y

BARIRARHRARIX L IBEL, (HEERIXEPythonfF SHAERTHENS, — M AR
RHATHES (=), MIREANES (==) . Hicd, =2RESRERN, =—=RHRERF. A~
FAE=<2=>IXFEHIBEFT,

25

26 CHAPTER 3. £&MAHUT

print(‘x is postitive’)

Figure 3.1: If Logic
3.2 BHIBRIT

WHIZHR tffiand (5) . or () Snot (IB) =4, XLEIBFAFIIE LS ENIMHRE L
ML Bilan,

x > 0 and x < 10
RIEXAKTF0IFH/NF 100/ E,

#n%k2 == 0 or n)3 == OHPEPEMANE, MR, XMEFRER2E LR, TR
LB E,

BIE—, notBEFSH—Mi/RFERWLERIZ, TN, fx > yhlE, Witk
%FFy, Mnot (x > y)HNE;

FeREPE, IBBIZBEARNZENRMIZRM/RRIXR, BEPythonFH REIR™ M, EMAETEHFE
#HarEER ‘B

>>> 17 and True
True

RFMRIEERIFERE N, EREE SRR, FRIFRERE A CEMT 2, BN
AL

3.3 Conditional execution

In order to write useful programs, we almost always need the ability to check conditions
and change the behavior of the program accordingly. Conditional statements give us this
ability. The simplest form is the if statement:

if x > 0 :
print('x is positive')

The boolean expression after the if statement is called the condition. We end the if
statement with a colon character (:) and the line(s) after the if statement are indented.

If the logical condition is true, then the indented statement gets executed. If the logical
condition is false, the indented statement is skipped.

if statements have the same structure as function definitions or for loops'. The state-

'We will learn about functions in Chapter 4 and loops in Chapter 5.

3.4. ALTERNATIVE EXECUTION 27

ment consists of a header line that ends with the colon character (:) followed by an in-
dented block. Statements like this are called compound statements because they stretch
across more than one line.

There is no limit on the number of statements that can appear in the body, but there must
be at least one. Occasionally, it is useful to have a body with no statements (usually as
a place holder for code you haven’ t written yet). In that case, you can use the pass
statement, which does nothing.

if x <0 :
pass # need to handle negative values!

If you enter an if statement in the Python interpreter, the prompt will change from three
chevrons to three dots to indicate you are in the middle of a block of statements, as shown
below:

>>> x = 3

>>> if x < 10:
print('Small')

Small

>>>

3.4 Alternative execution

A second form of the if statement is alternative execution, in which there are two pos-
sibilities and the condition determines which one gets executed. The syntax looks like
this:

if x%2 == 0

print('x is even')
else :

print('x is odd')

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program
displays a message to that effect. If the condition is false, the second set of statements is
executed.

Since the condition must either be true or false, exactly one of the alternatives will be
executed. The alternatives are called branches, because they are branches in the flow of
execution.

3.5 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches.
One way to express a computation like that is a chained conditional:

28 CHAPTER 3. £&MAHUT

No @ Yes

print(‘x is odd’) print(‘x is even’)

“

Figure 3.2: If-Then-Else Logic

print(‘less’)

print (‘greater’)

print(‘equal’)

Figure 3.3: If-Then-Elself Logic

if x < y:

print('x is less than y')
elif x > y:

print('x is greater than y')
else:

print('x and y are equal')

elif is an abbreviation of “elseif.” Again, exactly one branch will be executed.

There is no limit on the number of elif statements. If there is an else clause, it has to
be at the end, but there doesn’ t have to be one.

if choice == 'a':
print('Bad guess')
elif choice == 'b':
print('Good guess')
elif choice == 'c':
print('Close, but not correct')

Each condition is checked in order. If the first is false, the next is checked, and so on. If
one of them is true, the corresponding branch executes, and the statement ends. Even if
more than one condition is true, only the first true branch executes.

3.6. NESTED CONDITIONALS 29

Yes * No

x==y

v Yes No

print(‘equal’)

print(‘less’) print“greater’)

> T
!

Figure 3.4: Nested If Statements

3.6 Nested conditionals

One conditional can also be nested within another. We could have written the three-
branch example like this:

if x ==
print('x and y are equal')
else:
if x < y:
print('x is less than y')
else:

print('x is greater than y')

The outer conditional contains two branches. The first branch contains a simple state-
ment. The second branch contains another if statement, which has two branches of its
own. Those two branches are both simple statements, although they could have been
conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested condi-
tionals become difficult to read very quickly. In general, it is a good idea to avoid them
when you can.

Logical operators often provide a way to simplify nested conditional statements. For ex-
ample, we can rewrite the following code using a single conditional:

if 0 < x:
if x < 10:
print('x is a positive single-digit number.')

The print statement is executed only if we make it past both conditionals, so we can get
the same effect with the and operator:

if 0 < x and x < 10:
print('x is a positive single-digit number.')

30 CHAPTER 3. #M-401T
3.7 Catching exceptions using try and except

Earlier we saw a code segment where we used the input and int functions to read and
parse an integer number entered by the user. We also saw how treacherous doing this
could be:

>>> prompt = "What...is the airspeed velocity of an unladen swallow?\n"
>>> gpeed = input (prompt)

What...is the airspeed velocity of an unladen swallow?

What do you mean, an African or a European swallow?

>>> int(speed)

ValueError: invalid literal for int() with base 10:

>>>

When we are executing these statements in the Python interpreter, we get a new prompt
from the interpreter, think “oops” , and move on to our next statement.

However if you place this code in a Python script and this error occurs, your script imme-
diately stops in its tracks with a traceback. It does not execute the following statement.

Here is a sample program to convert a Fahrenheit temperature to a Celsius temperature:

inp = input('Enter Fahrenheit Temperature: ')
fahr = float(inp)

cel = (fahr - 32.0) * 5.0 / 9.0

print(cel)

Code: http://www.pyde.com/code3/fahren.py

If we execute this code and give it invalid input, it simply fails with an unfriendly error
message:

python fahren.py
Enter Fahrenheit Temperature:72
22.22222222222222

python fahren.py
Enter Fahrenheit Temperature:fred
Traceback (most recent call last):
File "fahren.py", line 2, in <module>
fahr = float(inp)
ValueError: could not convert string to float: 'fred'

There is a conditional execution structure built into Python to handle these types of ex-
pected and unexpected errors called “try/except” . The idea of try and except is that
you know that some sequence of instruction(s) may have a problem and you want to add
some statements to be executed if an error occurs. These extra statements (the except
block) are ignored if there is no error.

You can think of the try and except feature in Python as an “insurance policy” on a
sequence of statements.

We can rewrite our temperature converter as follows:

3.8. SHORT-CIRCUIT EVALUATION OF LOGICAL EXPRESSIONS 31

inp = input('Enter Fahrenheit Temperature:')

try:
fahr = float(inp)
cel = (fahr - 32.0) * 5.0 / 9.0
print(cel)

except:

print('Please enter a number')

Code: http://www.pyde.com/code3/fahren2. py

Python starts by executing the sequence of statements in the try block. If all goes well,
it skips the except block and proceeds. If an exception occurs in the try block, Python
jumps out of the try block and executes the sequence of statements in the except block.

python fahren2.py
Enter Fahrenheit Temperature:72
22.22222222222222

python fahren2.py
Enter Fahrenheit Temperature:fred
Please enter a number

Handling an exception with a try statement is called catching an exception. In this exam-
ple, the except clause prints an error message. In general, catching an exception gives
you a chance to fix the problem, or try again, or at least end the program gracefully.

3.8 Short-circuit evaluation of logical expressions

When Python is processing a logical expression suchasx >= 2 and (x/y) > 2,iteval-
uates the expression from left to right. Because of the definition of and, if x is less than
2, the expression x >= 2 is False and so the whole expression is False regardless of
whether (x/y) > 2 evaluates to True or False.

When Python detects that there is nothing to be gained by evaluating the rest of a logical
expression, it stops its evaluation and does not do the computations in the rest of the
logical expression. When the evaluation of a logical expression stops because the overall
value is already known, it is called short-circuiting the evaluation.

While this may seem like a fine point, the short-circuit behavior leads to a clever tech-
nique called the guardian pattern. Consider the following code sequence in the Python
interpreter:

>>> x = 6

>>> y = 2

>>> x >= 2 and (x/y) > 2
True

>>> x = 1

>>> vy =0

>>> x >= 2 and (x/y) > 2

32 CHAPTER 3. £&MAHUT

False
>>> x =6
>>>y =0

>>> x >= 2 and (x/y) > 2

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

>>>

The third calculation failed because Python was evaluating (x/y) and y was zero, which
causes a runtime error. But the second example did not fail because the first part of the
expression x >= 2 evaluated to False so the (x/y) was not ever executed due to the
short-circuit rule and there was no error.

We can construct the logical expression to strategically place a guard evaluation just be-
fore the evaluation that might cause an error as follows:

>>> x

>>> y =

>>> x >= 2 and y != 0 and (x/y) > 2

False

>>> x =6

>>>y =0

>>> x >= 2 and y != 0 and (x/y) > 2

False

>>> x >= 2 and (x/y) > 2 and y != 0

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

>>>

I
O =

In the first logical expression, x >= 2is False so the evaluation stops at the and. In the

second logical expression, x >= 2is True buty != 0is False so we never reach (x/
¥).
In the third logical expression, they != Oisafterthe (x/y) calculation so the expression

fails with an error.

Inthe second expression, wesaythaty != 0Oactsasaguardtoinsure that we only execute
(x/y) if y is non-zero.

3.9 Debugging

The traceback Python displays when an error occurs contains a lot of information, but it
can be overwhelming. The most useful parts are usually:

What kind of error it was, and

Where it occurred.

3.10. GLOSSARY 33

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors can
be tricky because spaces and tabs are invisible and we are used to ignoring them.

>>> x =5
>>> y =6

File "<stdin>", line 1
y =6

IndentationError: unexpected indent

In this example, the problem is that the second line is indented by one space. But the error
message points to y, which is misleading. In general, error messages indicate where the
problem was discovered, but the actual error might be earlier in the code, sometimes on
a previous line.

In general, error messages tell you where the problem was discovered, but that is often
not where it was caused.

3.10 Glossary

body The sequence of statements within a compound statement.

boolean expression An expression whose value is either True or False.

branch One of the alternative sequences of statements in a conditional statement.

chained conditional A conditional statement with a series of alternative branches.

comparison operator One of the operators that compares its operands: ==, !=, > < >=,
and <=.

conditional statement A statement that controls the flow of execution depending on
some condition.

condition The boolean expression in a conditional statement that determines which
branch is executed.

compound statement A statement that consists of a header and a body. The header ends
with a colon (). The body is indented relative to the header.

guardian pattern Where we construct a logical expression with additional comparisons
to take advantage of the short-circuit behavior.

logical operator One of the operators that combines boolean expressions: and, or, and
not.

nested conditional A conditional statement that appears in one of the branches of an-
other conditional statement.

traceback A list of the functions that are executing, printed when an exception occurs.

short circuit When Python is part-way through evaluating a logical expression and stops
the evaluation because Python knows the final value for the expression without
needing to evaluate the rest of the expression.

3.11 Exercises

Exercise 1: Rewrite your pay computation to give the employee 1.5 times the hourly rate
for hours worked above 40 hours.

34 CHAPTER 3. AT

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

Exercise 2: Rewrite your pay program using try and except so that your program han-
dles non-numeric input gracefully by printing a message and exiting the program. The
following shows two executions of the program:

Enter Hours: 20
Enter Rate: nine
Error, please enter numeric input

Enter Hours: forty
Error, please enter numeric input

Exercise 3: Write a program to prompt for a score between 0.0 and 1.0. If the score is out
of range, print an error message. If the score is between 0.0 and 1.0, print a grade using
the following table:

Score Grade

>= 0.9 A
>= 0.8 B
>= 0.7 C
>= 0.6 D
< 0.6 F

Enter score: 0.95 A ~~~~

Enter score: perfect
Bad score

Enter score: 10.0
Bad score

Enter score: 0.75
C

Enter score: 0.5
F

Run the program repeatedly as shown above to test the various different values for input.

Chapter 4

Functions

4.1 Function calls

In the context of programming, a function is a named sequence of statements that per-
forms a computation. When you define a function, you specify the name and the se-
quence of statements. Later, you can “call” the function by name. We have already
seen one example of a function call:

>>> type(32)
<class 'int'>

The name of the function is type. The expression in parentheses is called the argument
of the function. The argument is a value or variable that we are passing into the function
as input to the function. The result, for the type function, is the type of the argument.

It is common to say that a function “takes” an argument and “returns” a result. The
result is called the return value.

4.2 Built-in functions

Python provides a number of important built-in functions that we can use without need-
ing to provide the function definition. The creators of Python wrote a set of functions to
solve common problems and included them in Python for us to use.

The max and min functions give us the largest and smallest values in a list, respectively:

>>> max('Hello world')
w
>>> min('Hello world')

>>>

35

36 CHAPTER 4. FUNCTIONS

The max function tells us the “largest character” in the string (which turns out to be the
letter “w”) and the min function shows us the smallest character (which turns out to be
a space).

Another very common built-in function is the 1en function which tells us how many items
areinits argument. If the argument to len is a string, it returns the number of characters
in the string.

>>> len('Hello world')
11
>>>

These functions are not limited to looking at strings. They can operate on any set of values,
as we will see in later chapters.

You should treat the names of built-in functions as reserved words (i.e., avoid using
“max” as avariable name).

4.3 Type conversion functions

Python also provides built-in functions that convert values from one type to another. The
int function takes any value and converts it to an integer, if it can, or complains other-
wise:

>>> int('32"')

32

>>> int('Hello")

ValueError: invalid literal for int() with base 10: 'Hello'

int can convert floating-point values to integers, but it doesn’ t round off; it chops off
the fraction part:

>>> int(3.99999)
3

>>> int(-2.3)

-2

float converts integers and strings to floating-point numbers:

>>> float(32)

32.0

>>> float('3.14159")
3.14159

Finally, str converts its argument to a string:

>>> str(32)

1301

>>> str(3.14159)
'3.14159'

4.4. RANDOM NUMBERS 37

4.4 Random numbers

Given the same inputs, most computer programs generate the same outputs every time,
so they are said to be deterministic. Determinism is usually a good thing, since we expect
the same calculation to yield the same result. For some applications, though, we want the
computer to be unpredictable. Games are an obvious example, but there are more.

Making a program truly nondeterministic turns out to be not so easy, but there are ways
to make it at least seem nondeterministic. One of them is to use algorithms that generate
pseudorandom numbers. Pseudorandom numbers are not truly random because they are
generated by a deterministic computation, but just by looking at the numbers it is all but
impossible to distinguish them from random.

The random module provides functions that generate pseudorandom numbers (which I
will simply call “random” from here on).

The function random returns a random float between 0.0 and 1.0 (including 0.0 but not
1.0). Each time you call random, you get the next number in a long series. To see a sample,
run this loop:

import random

for i in range(10):
x = random.random()
print (x)

This program produces the following list of 10 random numbers between 0.0 and up to
but not including 1.0.

.11132867921152356
.5950949227890241
.04820265884996877
.841003109276478
.997914947094958
.04842330803368111
.7416295948208405
.510535245390327
.27447040171978143
.028511805472785867

O O O O O OO OO o

Exercise 1: Run the program on your system and see what numbers you get. Run the
program more than once and see what numbers you get.

The random function is only one of many functions that handle random numbers. The
function randint takes the parameters low and high, and returns an integer between
low and high (including both).

>>> random.randint (5, 10)
5
>>> random.randint (5, 10)
9

38 CHAPTER 4. FUNCTIONS

To choose an element from a sequence at random, you can use choice:

>>> t = [1, 2, 3]
>>> random.choice(t)
2

>>> random.choice(t)
3

The random module also provides functions to generate random values from continuous
distributions including Gaussian, exponential, gamma, and a few more.

4.5 Math functions

Python has a math module that provides most of the familiar mathematical functions.
Before we can use the module, we have to import it:

>>> import math

This statement creates a module object named math. If you print the module object, you
get some information about it:

>>> print (math)
<module 'math' (built-in)>

The module object contains the functions and variables defined in the module. To access
one of the functions, you have to specify the name of the module and the name of the
function, separated by a dot (also known as a period). This format is called dot notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.loglO(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the signal-to-noise ratio. The math
module also provides a function called log that computes logarithms base e.

The second example finds the sine of radians. The name of the variable is a hint that
sin and the other trigonometric functions (cos, tan, etc.) take arguments in radians. To
convert from degrees to radians, divide by 360 and multiply by 27:

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)

0.7071067811865476

4.6. ADDING NEW FUNCTIONS 39

The expression math.pi gets the variable pi from the math module. The value of this
variable is an approximation of 7, accurate to about 15 digits.

If you know your trigonometry, you can check the previous result by comparing it to the
square root of two divided by two:

>>> math.sqrt(2) / 2.0
0.7071067811865476

4.6 Adding new functions

So far, we have only been using the functions that come with Python, but it is also possible
to add new functions. A function definition specifies the name of a new function and
the sequence of statements that execute when the function is called. Once we define a
function, we can reuse the function over and over throughout our program.

Here is an example:

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print('I sleep all night and I work all day.')

def is a keyword that indicates that this is a function definition. The name of the func-
tion is print_lyrics. The rules for function names are the same as for variable names:
letters, numbers and some punctuation marks are legal, but the first character can’ t be
a number. You can’ t use a keyword as the name of a function, and you should avoid
having a variable and a function with the same name.

The empty parentheses after the name indicate that this function doesn’ t take any argu-
ments. Later we will build functions that take arguments as their inputs.

The first line of the function definition is called the header; the rest is called the body.
The header has to end with a colon and the body has to be indented. By convention, the
indentation is always four spaces. The body can contain any number of statements.

The strings in the print statements are enclosed in quotes. Single quotes and double
quotes do the same thing; most people use single quotes except in cases like this where a
single quote (which is also an apostrophe) appears in the string.

If you type a function definition in interactive mode, the interpreter prints ellipses (...) to
let you know that the definition isn’ t complete:

>>> def print_lyricsQ):
print("I'm a lumberjack, and I'm okay.")
print('I sleep all night and I work all day.')

To end the function, you have to enter an empty line (this is not necessary in a script).

Defining a function creates a variable with the same name.

40 CHAPTER 4. FUNCTIONS

>>> print(print_lyrics)

<function print_lyrics at Oxb7e99e9c>
>>> print(type(print_lyrics))

<class 'function'>

The value of print_lyrics is a function object, which has type “function” .

The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For example,
to repeat the previous refrain, we could write a function called repeat_lyrics:

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then call repeat_lyrics:

>>> repeat_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.
I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

But that’ s not really how the song goes.

4.7 Definitions and uses

Pulling together the code fragments from the previous section, the whole program looks
like this:

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print('I sleep all night and I work all day.')

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

Code: http://www.pyde.com/code3/lyrics.py

4.8. FLOW OF EXECUTION 41

This program contains two function definitions: print_lyrics and repeat_lyrics.
Function definitions get executed just like other statements, but the effect is to create
function objects. The statements inside the function do not get executed until the func-
tion is called, and the function definition generates no output.

As you might expect, you have to create a function before you can execute it. In other
words, the function definition has to be executed before the first time it is called.

Exercise 2: Move the lastline of this program to the top, so the function call appears before
the definitions. Run the program and see what error message you get.

Exercise 3: Move the function call back to the bottom and move the definition of
print_lyrics after the definition of repeat_lyrics. What happens when you run
this program?

4.8 Flow of execution

In order to ensure that a function is defined before its first use, you have to know the order
in which statements are executed, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are executed
one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that
statements inside the function are not executed until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next state-
ment, the flow jumps to the body of the function, executes all the statements there, and
then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another.
While in the middle of one function, the program might have to execute the statements
in another function. But while executing that new function, the program might have to
execute yet another function!

Fortunately, Python is good at keeping track of where it is, so each time a function com-
pletes, the program picks up where it left off in the function that called it. When it gets to
the end of the program, it terminates.

What' s the moral of this sordid tale? When you read a program, you don’ t always want
to read from top to bottom. Sometimes it makes more sense if you follow the flow of
execution.

4.9 Parameters and arguments

Some of the built-in functions we have seen require arguments. For example, when you
call math.sin you pass a number as an argument. Some functions take more than one
argument: math. pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to variables called parameters. Here is
an example of a user-defined function that takes an argument:

42 CHAPTER 4. FUNCTIONS

def print_twice(bruce):
print (bruce)
print (bruce)

This function assigns the argument to a parameter named bruce. When the function is
called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice('Spam')
Spam

Spam

>>> print_twice(17)

17

17

>>> import math

>>> print_twice(math.pi)
3.141592653589793
3.141592653589793

The same rules of composition that apply to built-in functions also apply to user-defined
functions, so we can use any kind of expression as an argument for print_twice:

>>> print_twice('Spam '*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))
-1.0

-1.0

The argument is evaluated before the function is called, so in the examples the expres-
sions” Spam’ *4andmath.cos(math.pi) ‘are only evaluated once.

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'
>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do with the
name of the parameter (bruce). It doesn’ t matter what the value was called back home
(in the caller); here in print_twice, we call everybody bruce.

4.10 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results; for lack of a
better name, I call them fruitful functions. Other functions, like print_twice, perform
an action but don’ t return a value. They are called void functions.

4.10. FRUITFUL FUNCTIONS AND VOID FUNCTIONS 43

When you call a fruitful function, you almost always want to do something with the result;
for example, you might assign it to a variable or use it as part of an expression:

x = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)
2.23606797749979

But in a script, if you call a fruitful function and do not store the result of the function in
a variable, the return value vanishes into the mist!

math.sqrt(5)

This script computes the square root of 5, but since it doesn’ tstore the resultin a variable
or display the result, it is not very useful.

Void functions might display something on the screen or have some other effect, but they
don’ thave a return value. If you try to assign the result to a variable, you get a special
value called None.

>>> result = print_twice('Bing')
Bing

Bing

>>> print(result)

None

The value None is not the same as the string “None” . It is a special value that has its
own type:

>>> print (type(None))
<class 'NoneType'>

To return a result from a function, we use the return statement in our function. For
example, we could make a very simple function called addtwo that adds two numbers
together and returns a result.

def addtwo(a, b):
added = a + b
return added

x = addtwo(3, 5)
print (x)

Code: http://www.pyde.com/code3/addtwo.py

44 CHAPTER 4. FUNCTIONS

When this script executes, the print statement will print out “8” because the addtwo
function was called with 3 and 5 as arguments. Within the function, the parameters a
and b were 3 and 5 respectively. The function computed the sum of the two numbers and
placed it in the local function variable named added. Then it used the return statement
to send the computed value back to the calling code as the function result, which was
assigned to the variable x and printed out.

4.11 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions. There
are several reasons:

Creating a new function gives you an opportunity to name a group of statements,
which makes your program easier to read, understand, and debug.

Functions can make a program smaller by eliminating repetitive code. Later, if you
make a change, you only have to make it in one place.

Dividing a long program into functions allows you to debug the parts one at a time
and then assemble them into a working whole.

Well-designed functions are often useful for many programs. Once you write and
debug one, you can reuse it.

Throughout the rest of the book, often we will use a function definition to explain a con-
cept. Part of the skill of creating and using functions is to have a function properly capture
anideasuch as “find the smallest value in a list of values” . Later we will show you code
that finds the smallest in a list of values and we will present it to you as a function named
min which takes a list of values as its argument and returns the smallest value in the list.

4.12 Debugging

If you are using a text editor to write your scripts, you might run into problems with spaces
and tabs. The best way to avoid these problems is to use spaces exclusively (no tabs). Most
text editors that know about Python do this by default, but some don’ t.

Tabs and spaces are usually invisible, which makes them hard to debug, so try to find an
editor that manages indentation for you.

Also, don’ t forget to save your program before you run it. Some development environ-
ments do this automatically, but some don’ t. In that case, the program you are looking
at in the text editor is not the same as the program you are running.

Debugging can take a long time if you keep running the same incorrect program over and
over!

Make sure that the code you are looking at is the code you are running. If you’ re not sure,
put something like print ("hello") at the beginning of the program and run it again. If
you don’ tseehello, you’ re notrunning the right program!

4.13. GLOSSARY 45
4.13 Glossary

algorithm A general process for solving a category of problems.

argument A value provided to a function when the function is called. This value is as-
signed to the corresponding parameter in the function.

body The sequence of statements inside a function definition.

composition Using an expression as part of a larger expression, or a statement as part
of a larger statement.

deterministic Pertaining to a program that does the same thing each time it runs, given
the same inputs.

dot notation The syntax for calling a function in another module by specifying the mod-
ule name followed by a dot (period) and the function name.

flow of execution The order in which statements are executed during a program run.

fruitful function A function that returns a value.

function A named sequence of statements that performs some useful operation. Func-
tions may or may not take arguments and may or may not produce a result.

function call A statement that executes a function. It consists of the function name fol-
lowed by an argument list.

function definition A statement that creates a new function, specifying its name, param-
eters, and the statements it executes.

function object A value created by a function definition. The name of the function is a
variable that refers to a function object.

header The first line of a function definition.

import statement A statement that reads a module file and creates a module object.

module object A value created by an import statement that provides access to the data
and code defined in a module.

parameter A name used inside a function to refer to the value passed as an argument.

pseudorandom Pertaining to a sequence of numbers that appear to be random, but are
generated by a deterministic program.

return value The result of a function. If a function call is used as an expression, the
return value is the value of the expression.

void function A function that does not return a value.

4.14 Exercises

Exercise 4: What is the purpose of the “def” keyword in Python?

a) It is slang that means “the following code is really cool”

b) It indicates the start of a function

¢) It indicates that the following indented section of code is to be stored for later
d) b and c are both true

e) None of the above

Exercise 5: What will the following Python program print out?

def fred():
print("Zap")

def jane(Q):
print ("ABC")

46 CHAPTER 4. FUNCTIONS

jane()
fred()
jane ()

a) Zap ABC jane fred jane
b) Zap ABC Zap

¢) ABC Zap jane

d) ABC Zap ABC

e) Zap Zap Zap

Exercise 6: Rewrite your pay computation with time-and-a-half for overtime and create a
function called computepay which takes two parameters (hours and rate).

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

Exercise 7: Rewrite the grade program from the previous chapter using a function called
computegrade that takes a score as its parameter and returns a grade as a string.

Score Grade

> 0.9 A
> 0.8 B
> 0.7 C
> 0.6 D
<= 0.6 F

Program Execution:

Enter score: 0.95
A

Enter score: perfect
Bad score

Enter score: 10.0
Bad score

Enter score: 0.75
C

Enter score: 0.5
F

Run the program repeatedly to test the various different values for input.

Chapter 5

Iteration

5.1 Updating variables

A common pattern in assignment statements is an assignment statement that updates a
variable, where the new value of the variable depends on the old.

This means “get the current value of x, add 1, and then update x with the new value.”

If you try to update a variable that doesn’ t exist, you get an error, because Python eval-
uates the right side before it assigns a value to x:

>>> x =x + 1

NameError: name '

x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple assign-
ment:

>>> x =0
>>> x x + 1

Updating a variable by adding 1 is called an increment; subtracting 1 is called a decre-
ment.

5.2 The while statement

Computers are often used to automate repetitive tasks. Repeating identical or similar
tasks without making errors is something that computers do well and people do poorly.
Because iteration is so common, Python provides several language features to make it
easier.

One form of iteration in Python is the while statement. Here is a simple program that
counts down from five and then says “Blastoff!” .

47

48 CHAPTER 5. ITERATION

n=>5

while n > O:
print(n)
n=n-1

print('Blastoff!"')

You can almost read the while statement as if it were English. It means, “While n is
greater than 0, display the value of n and then reduce the value of n by 1. When you get
to 0, exit the while statement and display the word Blastoff!”

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

2. If the condition is false, exit the while statement and continue execution at the
next statement.

3. If the condition is true, execute the body and then go back to step

1.

This type of flow is called a loop because the third step loops back around to the top. We
call each time we execute the body of the loop an iteration. For the above loop, we would
say, “It had five iterations” , which means that the body of the loop was executed five
times.

The body of the loop should change the value of one or more variables so that eventually
the condition becomes false and the loop terminates. We call the variable that changes
each time the loop executes and controls when the loop finishes the iteration variable. If
there is no iteration variable, the loop will repeat forever, resulting in an infinite loop.

5.3 Infinite loops

An endless source of amusement for programmers is the observation that the directions
on shampoo, “Lather, rinse, repeat,” are an infinite loop because there is no iteration
variable telling you how many times to execute the loop.

In the case of countdown, we can prove that the loop terminates because we know that
the value of n is finite, and we can see that the value of n gets smaller each time through
the loop, so eventually we have to get to 0. Other times a loop is obviously infinite because
it has no iteration variable at all.

5.4 “Infinite loops” and break

Sometimes you don’ t know it s time to end a loop until you get half way through the
body. In that case you can write an infinite loop on purpose and then use the break
statement to jump out of the loop.

This loop is obviously an infinite loop because the logical expression on the while state-
ment is simply the logical constant True:

5.5. FINISHING ITERATIONS WITH CONTINUE 49

n = 10

while True:
print(n, end=' ')
n=n-1

print('Done!")

If you make the mistake and run this code, you will learn quickly how to stop a runaway
Python process on your system or find where the power-off button is on your computer.
This program will run forever or until your battery runs out because the logical expression
at the top of the loop is always true by virtue of the fact that the expression is the constant
value True.

While this is a dysfunctional infinite loop, we can still use this pattern to build useful loops
as long as we carefully add code to the body of the loop to explicitly exit the loop using
break when we have reached the exit condition.

For example, suppose you want to take input from the user until they type done. You
could write:

while True:
line = input('> ')
if line == 'done':
break
print(line)
print('Done!")

Code: http://www.pyde.com/code3/copytildonel.py

The loop condition is True, which is always true, so the loop runs repeatedly until it hits
the break statement.

Each time through, it prompts the user with an angle bracket. If the user types done, the
break statement exits the loop. Otherwise the program echoes whatever the user types
and goes back to the top of the loop. Here’ s a sample run:

> hello there
hello there

> finished
finished

> done

Done!

This way of writing while loops is common because you can check the condition any-
where in the loop (not just at the top) and you can express the stop condition affirmatively
(“stop when this happens”) rather than negatively (“keep going until that happens.”).

5.5 Finishing iterations with continue

Sometimes you are in an iteration of a loop and want to finish the current iteration and
immediately jump to the next iteration. In that case you can use the continue statement
to skip to the next iteration without finishing the body of the loop for the current iteration.

50 CHAPTER 5. ITERATION

Here is an example of a loop that copies its input until the user types “done” |, but treats
lines that start with the hash character as lines not to be printed (kind of like Python
comments).

while True:
line = input('> ")

if 1line[0] == '"#':
continue

if line == 'done':
break

print(line)

print('Done!")
Code: http://www.pyse.com/code3/copytildone2. py
Here is a sample run of this new program with continue added.

> hello there

hello there

> # don't print this
> print this!

print this!

> done

Done!

All the lines are printed except the one that starts with the hash sign because when the
continue is executed, it ends the current iteration and jumps back to the while state-
ment to start the next iteration, thus skipping the print statement.

5.6 Definite loops using for

Sometimes we want to loop through a set of things such as a list of words, the lines in a
file, or a list of numbers. When we have a list of things to loop through, we can construct
a definite loop using a for statement. We call the while statement an indefinite loop
because it simply loops until some condition becomes False, whereas the for loop is
looping through a known set of items so it runs through as many iterations as there are
items in the set.

The syntax of a for loop is similar to the while loop in that there is a for statement and
a loop body:

friends = ['Joseph', 'Glenn', 'Sally']
for friend in friends:

print ('Happy New Year:', friend)
print('Done!")

In Python terms, the variable friends is a list' of three strings and the for loop goes
through the listand executes the body once for each of the three strings in the list resulting
in this output:

1We will examine lists in more detail in a later chapter.

5.7. LOOP PATTERNS 51

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally
Done!

Translating this for loop to English is not as direct as the while, but if you think of friends
as a set, it goes like this: “Run the statements in the body of the for loop once for each
friend in the set named friends.”

Looking at the for loop, for and in are reserved Python keywords, and friend and
friends are variables.

for friend in friends:
print ('Happy New Year:', friend)

In particular, friend is the iteration variable for the for loop. The variable friend
changes for each iteration of the loop and controls when the for loop completes. The
iteration variable steps successively through the three strings stored in the friends vari-
able.

5.7 Loop patterns

Often we use a for or while loop to go through a list of items or the contents of a file
and we are looking for something such as the largest or smallest value of the data we scan
through.

These loops are generally constructed by:

Initializing one or more variables before the loop starts

Performing some computation on each item in the loop body, possibly changing
the variables in the body of the loop

Looking at the resulting variables when the loop completes

We will use a list of numbers to demonstrate the concepts and construction of these loop
patterns.

5.7.1 Counting and summing loops

For example, to count the number of items in a list, we would write the following for
loop:

count = 0O

for itervar in [3, 41, 12, 9, 74, 15]:
count = count + 1

print('Count: ', count)

52 CHAPTER 5. ITERATION

We set the variable count to zero before the loop starts, then we write a for loop to run
through the list of numbers. Our iteration variable is named itervar and while we do not
use itervar in the loop, it does control the loop and cause the loop body to be executed
once for each of the values in the list.

In the body of the loop, we add 1 to the current value of count for each of the values in
the list. While the loop is executing, the value of count is the number of values we have
seen “sofar” .

Once the loop completes, the value of count is the total number of items. The total num-
ber “fallsin ourlap” atthe end of the loop. We construct the loop so that we have what
we want when the loop finishes.

Another similar loop that computes the total of a set of numbers is as follows:

total = 0

for itervar in [3, 41, 12, 9, 74, 15]:
total = total + itervar

print('Total: ', total)

In this loop we do use the iteration variable. Instead of simply adding one to the count as
in the previous loop, we add the actual number (3, 41, 12, etc.) to the running total during
each loop iteration. If you think about the variable total, it contains the “running total
of the values so far” . So before the loop starts total is zero because we have not yet seen
any values, during the loop total is the running total, and at the end of the loop total
is the overall total of all the values in the list.

As the loop executes, total accumulates the sum of the elements; a variable used this
way is sometimes called an accumulator.

Neither the counting loop nor the summing loop are particularly useful in practice be-
cause there are built-in functions 1len () and sum() that compute the number of items in
a list and the total of the items in the list respectively.

5.7.2 Maximum and minimum loops

To find the largest value in a list or sequence, we construct the following loop:

largest = None
print('Before:', largest)
for itervar in [3, 41, 12, 9, 74, 15]:
if largest is None or itervar > largest
largest = itervar
print('Loop:', itervar, largest)
print('Largest:', largest)

When the program executes, the output is as follows:

Before: None
Loop: 3 3
Loop: 41 41

5.7. LOOP PATTERNS 53

Loop: 12 41
Loop: 9 41
Loop: 74 74
Loop: 15 74
Largest: 74

The variable largest is best thought of as the “largest value we have seen so far” . Be-
fore the loop, we set largest to the constant None. None is a special constant value which
we can store in a variable to mark the variable as “empty” .

Before the loop starts, the largest value we have seen so far is None since we have not
yet seen any values. While the loop is executing, if largest is None then we take the
first value we see as the largest so far. You can see in the first iteration when the value of
itervar is 3, since largest is None, we immediately set largest to be 3.

After the first iteration, largest is no longer None, so the second part of the compound
logical expression that checks itervar > largest triggers only when we see a value
thatislarger than the “largestsofar” . When we see anew “even larger” value we take
that new value for largest. You can see in the program output that largest progresses
from 3 to 41 to 74.

At the end of the loop, we have scanned all of the values and the variable largest now
does contain the largest value in the list.

To compute the smallest number, the code is very similar with one small change:

smallest = None
print('Before:', smallest)
for itervar in [3, 41, 12, 9, 74, 15]:
if smallest is None or itervar < smallest:
smallest = itervar
print('Loop:', itervar, smallest)
print('Smallest:', smallest)

Again, smallest is the “smallest so far” before, during, and after the loop executes.
When the loop has completed, smallest contains the minimum value in the list.

Again as in counting and summing, the built-in functions max () and min () make writing
these exact loops unnecessary.

The following is a simple version of the Python built-in min () function:

def min(values):
smallest = None
for value in values:
if smallest is None or value < smallest:
smallest = value
return smallest

In the function version of the smallest code, we removed all of the print statements so
as to be equivalent to the min function which is already built in to Python.

54 CHAPTER 5. ITERATION
5.8 Debugging

As you start writing bigger programs, you might find yourself spending more time debug-
ging. More code means more chances to make an error and more places for bugs to hide.

One way to cut your debugging time is “debugging by bisection.” For example, if there
are 100 lines in your program and you check them one at a time, it would take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program, or near it,
for an intermediate value you can check. Add a print statement (or something else that
has a verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be in the first half of the program.
If it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you have to search.
After six steps (which is much less than 100), you would be down to one or two lines of
code, at least in theory.

In practice it is not always clear what the “middle of the program” is and not always
possible to check it. It doesn’ t make sense to count lines and find the exact midpoint.
Instead, think about places in the program where there might be errors and places where
it is easy to put a check. Then choose a spot where you think the chances are about the
same that the bug is before or after the check.

5.9 Glossary

accumulator A variable used in a loop to add up or accumulate a result.

counter A variable used in a loop to count the number of times something happened.
We initialize a counter to zero and then increment the counter each time we want
to “count” something.

decrement An update that decreases the value of a variable.

initialize An assignment that gives an initial value to a variable that will be updated.

increment An update that increases the value of a variable (often by one).

infinite loop A loop in which the terminating condition is never satisfied or for which
there is no terminating condition.

iteration Repeated execution of a set of statements using either a function that calls itself
or a loop.

5.10 Exercises

Exercise 1: Write a program which repeatedly reads numbers until the user enters
“done” . Once “done” is entered, print out the total, count, and average of the
numbers. If the user enters anything other than a number, detect their mistake using
try and except and print an error message and skip to the next number.

Enter a number: 4

Enter a number: 5

Enter a number: bad data
Invalid input

5.10. EXERCISES 55

Enter a number: 7
Enter a number: done
16 3 5.333333333333333

Exercise 2: Write another program that prompts for a list of numbers as above and at the
end prints out both the maximum and minimum of the numbers instead of the average.

56

CHAPTER 5. ITERATION

Chapter 6

Strings

6.1 A string is a sequence

A string is a sequence of characters. You can access the characters one at a time with the
bracket operator:

>>> fruit = 'banana'
>>> letter = fruit[1]

The second statement extracts the character at index position 1 from the fruit variable
and assigns it to the letter variable.

The expression in brackets is called an index. The index indicates which character in the
sequence you want (hence the name).

But you might not get what you expect:

>>> print(letter)
a

For most people, the first letter of “banana” is b, not a. But in Python, the index is an
offset from the beginning of the string, and the offset of the first letter is zero.

>>> letter = fruit[0]
>>> print(letter)
b

So b is the Oth letter (“zero-eth”) of “banana” , a is the 1th letter (“one-eth”), and n
is the 2th (“two-eth”) letter.

You can use any expression, including variables and operators, as an index, but the value
of the index has to be an integer. Otherwise you get:

>>> letter = fruit[1.5]
TypeError: string indices must be integers

57

58 CHAPTER 6. STRINGS

blaln|a|n|a
[0 [[2 [38] [4] I5]

Figure 6.1: String Indexes

6.2 Getting the length of a string using len

len is a built-in function that returns the number of characters in a string:

>>> fruit = 'banana'
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

The reason for the IndexError is that there is no letter in 'banana' with the index 6.
Since we started counting at zero, the six letters are numbered 0 to 5. To get the last
character, you have to subtract 1 from length:

>>> last = fruit[length-1]
>>> print(last)
a

Alternatively, you can use negative indices, which count backward from the end of the
string. The expression fruit [-1] yields the last letter, fruit [-2] yields the second to
last, and so on.

6.3 Traversal through a string with a loop

Alot of computations involve processing a string one character at a time. Often they start
at the beginning, select each character in turn, do something to it, and continue until the
end. This pattern of processing is called a traversal. One way to write a traversal is with
awhile loop:

index = 0

while index < len(fruit):
letter = fruit[index]
print(letter)
index = index + 1

6.4. STRING SLICES 59

This loop traverses the string and displays each letter on a line by itself. The loop condi-
tion is index \< len(fruit), so when index is equal to the length of the string, the
condition is false, and the body of the loop is not executed. The last character accessed
is the one with the index 1en(fruit) -1, which is the last character in the string.

Exercise 1: Write a while loop that starts at the last character in the string and works its
way backwards to the first character in the string, printing each letter on a separate line,
except backwards.

Another way to write a traversal is with a for loop:

for char in fruit:
print (char)

Each time through the loop, the next character in the string is assigned to the variable
char. The loop continues until no characters are left.

6.4 String slices

A segment of a string is called a slice. Selecting a slice is similar to selecting a character:

>>> s = 'Monty Python'
>>> print(s[0:5])
Monty

>>> print(s[6:12])
Python

The operator returns the part of the string from the “n-eth” character to the “m-eth”
character, including the first but excluding the last.

If you omit the first index (before the colon), the slice starts at the beginning of the string.
If you omit the second index, the slice goes to the end of the string:

>>> fruit = 'banana'
>>> fruit[:3]

"ban'

>>> fruit[3:]

"ana'’

If the first index is greater than or equal to the second the result is an empty string, rep-
resented by two quotation marks:

>>> fruit = 'banana'
>>> fruit[3:3]

I

An empty string contains no characters and has length 0, but other than that, it is the
same as any other string.

Exercise 2: Given that fruit is a string, what does fruit[:] mean?

60 CHAPTER 6. STRINGS

6.5 Strings are immutable

It is tempting to use the operator on the left side of an assignment, with the intention of
changing a character in a string. For example:

>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'
TypeError: 'str' object does not support item assignment

The “object” inthiscaseisthestringandthe “item” isthe characteryou tried to assign.
For now, an object is the same thing as a value, but we will refine that definition later. An
item is one of the values in a sequence.

The reason for the error is that strings are immutable, which means you can’ t change
an existing string. The best you can do is create a new string that is a variation on the
original:

>>> greeting = 'Hello, world!'

>>> new_greeting = 'J' + greeting[1:]
>>> print(new_greeting)

Jello, world!

This example concatenates a new first letter onto a slice of greeting. It has no effect on
the original string.

6.6 Looping and counting

The following program counts the number of times the letter a appears in a string:

word = 'banana'
count = 0
for letter in word:
if letter == 'a':
count = count + 1
print (count)

This program demonstrates another pattern of computation called a counter. The vari-
able count is initialized to 0 and then incremented each time an a is found. When the
loop exits, count contains the result: the total number of a’ s.

Exercise 3:

Encapsulate this code in a function named count, and generalize it so that it accepts the
string and the letter as arguments.

6.7. THE IN OPERATOR 61

6.7 The in operator

The word in is a boolean operator that takes two strings and returns True if the first
appears as a substring in the second:

>>> 'a' in 'banana'
True

>>> 'seed' in 'banana'
False

6.8 String comparison
The comparison operators work on strings. To see if two strings are equal:

if word == 'banana':
print('All right, bananas.')

Other comparison operations are useful for putting words in alphabetical order:

if word < 'banana':

print('Your word,' + word + ', comes before banana.')
elif word > 'banana':

print('Your word,' + word + ', comes after banana.')
else:

print('All right, bananas.')

Python does not handle uppercase and lowercase letters the same way that people do. All
the uppercase letters come before all the lowercase letters, so:

Your word, Pineapple, comes before banana.

A common way to address this problem is to convert strings to a standard format, such as
all lowercase, before performing the comparison. Keep that in mind in case you have to
defend yourself against a man armed with a Pineapple.

6.9 string methods

Strings are an example of Python objects. An object contains both data (the actual string
itself) and methods, which are effectively functions that are built into the object and are
available to any instance of the object.

Python has a function called dir which lists the methods available for an object. The type
function shows the type of an object and the dir function shows the available methods.

62 CHAPTER 6. STRINGS

>>> stuff = 'Hello world'

>>> type(stuff)

<class 'str'>

>>> dir(stuff)

['capitalize', 'casefold', 'center', 'count', 'encode',
'endswith', 'expandtabs', 'find', 'format', 'format_map',
'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit',
'isidentifier', 'islower', 'isnumeric', 'isprintable',
'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower',
'lstrip', 'maketrans', 'partition', 'replace', 'rfind',
'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip',
'split', 'splitlines', 'startswith', 'strip', 'swapcase',
'title', 'translate', 'upper', 'zfill']

>>> help(str.capitalize)

Help on method_descriptor:

capitalize(...)
S.capitalize() -> str

Return a capitalized version of S, i.e. make the first character
have upper case and the rest lower case.
>>>

While the dir function lists the methods, and you can use help to get some simple doc-
umentation on a method, a better source of documentation for string methods would be
https://docs.python.org/3.5/library/stdtypes.html#string-methods.

Calling a method is similar to calling a function (it takes arguments and returns a value)
but the syntax is different. We call a method by appending the method name to the vari-
able name using the period as a delimiter.

For example, the method upper takes a string and returns a new string with all uppercase
letters:

Instead of the function syntax upper (word), it uses the method syntax word.upper ().

>>> word = 'banana'

>>> new_word = word.upper ()
>>> print (new_word)

BANANA

This form of dot notation specifies the name of the method, upper, and the name of the
string to apply the method to, word. The empty parentheses indicate that this method
takes no argument.

A method call is called an invocation; in this case, we would say that we are invoking
upper on the word.

For example, there is a string method named find that searches for the position of one
string within another:

>>> word = 'banana'
>>> index = word.find('a')

https://docs.python.org/3.5/library/stdtypes.html#string-methods

6.9. STRING METHODS 63

>>> print(index)
1

In this example, we invoke find on word and pass the letter we are looking for as a pa-
rameter.

The find method can find substrings as well as characters:

>>> word.find('na')
2

It can take as a second argument the index where it should start:

>>> yord.find('na', 3)
4

One common task is to remove white space (spaces, tabs, or newlines) from the beginning
and end of a string using the strip method:

>>> line = ' Here we go
>>> line.strip()

'Here we go'

Some methods such as startswith return boolean values.

>>> line = 'Have a nice day'
>>> line.startswith('Have')
True

>>> line.startswith('h')
False

You will note that startswith requires case to match, so sometimes we take a line and
map it all to lowercase before we do any checking using the lower method.

>>> line = 'Have a nice day'
>>> line.startswith('h')
False

>>> line.lower ()

'have a nice day'

>>> line.lower () .startswith('h')
True

In the last example, the method lower is called and then we use startswith to see if
the resulting lowercase string starts with the letter “h” . Aslong as we are careful with
the order, we can make multiple method calls in a single expression.

Exercise 4:

There is a string method called count that is similar to the function in the previous ex-
ercise. Read the documentation of this method at https://docs.python.org/3.5/library/
stdtypes.html#string-methods and write an invocation that counts the number of times
the letter a occursin “banana” .

https://docs.python.org/3.5/library/stdtypes.html#string-methods
https://docs.python.org/3.5/library/stdtypes.html#string-methods

64 CHAPTER 6. STRINGS
6.10 Parsing strings

Often, we want to look into a string and find a substring. For example if we were presented
a series of lines formatted as follows:

From stephen.marquard@ uct.ac.za Sat Jan 5 09:14:16 2008

and we wanted to pull out only the second half of the address (i.e., uct . ac.za) from each
line, we can do this by using the find method and string slicing.

First, we will find the position of the at-sign in the string. Then we will find the position of
the first space after the at-sign. And then we will use string slicing to extract the portion
of the string which we are looking for.

>>> data = 'From stephen.marquardQuct.ac.za Sat Jan 5 09:14:16 2008'
>>> atpos = data.find('@')

>>> print(atpos)

21

>>> gppos = data.find(' ',atpos)
>>> print (sppos)

31

>>> host = datalatpos+1:sppos]
>>> print (host)

uct.ac.za

>>>

We use a version of the find method which allows us to specify a position in the string
where we want f ind to start looking. When we slice, we extract the characters from “one
beyond the at-sign through up to but not including the space character” .

The documentation for the find method is available at

https://docs.python.org/3.5/library/stdtypes.html#string-methods.

6.11 Format operator

The format operator, % allows us to construct strings, replacing parts of the strings with
the data stored in variables. When applied to integers, % is the modulus operator. But
when the first operand is a string, % is the format operator.

The first operand is the format string, which contains one or more format sequences that
specify how the second operand is formatted. The result is a string.

For example, the format sequence “%d” means that the second operand should be for-

matted as an integer (d stands for “decimal”):

>>> camels = 42
>>> 'Y%d' % camels

142 !
The result is the string “42” | which is not to be confused with the integer value 42.

A format sequence can appear anywhere in the string, so you can embed a value in a
sentence:

https://docs.python.org/3.5/library/stdtypes.html#string-methods

6.12. DEBUGGING 65

>>> camels = 42
>>> 'T have spotted %d camels.' 7 camels
'I have spotted 42 camels.'

If there is more than one format sequence in the string, the second argument has to be a
tuple!. Each format sequence is matched with an element of the tuple, in order.

The following example uses “%d” to formataninteger, “%g” toformata floating-point
number (don’ task why), and “%s” to format a string:

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')

!

'"In 3 years I have spotted 0.1 camels.

The number of elements in the tuple must match the number of format sequences in the
string. The types of the elements also must match the format sequences:

>>> 'Yd %d %Kd' % (1, 2)

TypeError: not enough arguments for format string
>>> 'Yd' % 'dollars'

TypeError: Jd format: a number is required, not str

In the first example, there aren’ t enough elements; in the second, the element is the
wrong type.

The format operator is powerful, but it can be difficult to use. You can read more about it
at

https://docs.python.org/3.5/library/stdtypes.html#printf-style-string-formatting.

6.12 Debugging

A skill that you should cultivate as you program is always asking yourself, “What could
go wrong here?” or alternatively, “What crazy thing might our user do to crash our
(seemingly) perfect program?”

For example, look at the program which we used to demonstrate the while loop in the
chapter on iteration:

while True:
line = input('> ')

if line[0] == '#':
continue

if line == 'done':
break

print(line)

print('Done!")

Code: http://www.pyle.com/code3/copytildonel. py

1A tuple is a sequence of comma-separated values inside a pair of parenthesis. We will cover tuples in Chapter
10

https://docs.python.org/3.5/library/stdtypes.html#printf-style-string-formatting

66 CHAPTER 6. STRINGS

Look what happens when the user enters an empty line of input:

> hello there
hello there
> # don't print this
> print this!
print this!
>
Traceback (most recent call last):
File "copytildone.py", line 3, in <module>
if 1line[0] == '#':
IndexError: string index out of range

The code works fine until it is presented an empty line. Then there is no zero-th character,
so we get a traceback. There are two solutions to this to make line three “safe” even if
the line is empty.

One possibility is to simply use the startswith method which returns False if the string
is empty.

if line.startswith('#'):

Another way is to safely write the if statement using the guardian pattern and make sure
the second logical expression is evaluated only where there is at least one character in the
string.:

if len(line) > 0 and line[0] == '#':

6.13 Glossary

counter A variable used to count something, usually initialized to zero and then incre-
mented.

empty string A string with no characters and length 0, represented by two quotation
marks.

format operator An operator, %, that takes a format string and a tuple and generates a
string that includes the elements of the tuple formatted as specified by the format
string.

format sequence A sequence of characters in a format string, like %d, that specifies how
a value should be formatted.

format string A string, used with the format operator, that contains format sequences.

flag A boolean variable used to indicate whether a condition is true or false.

invocation A statement that calls a method.

immutable The property of a sequence whose items cannot be assigned.

index Anintegervalue usedto selectanitemin asequence, such asa characterin a string.

item One of the values in a sequence.

method A function that is associated with an object and called using dot notation.

object Something a variable can refer to. For now, you can use “object” and “value”
interchangeably.

6.14. EXERCISES 67

search A pattern of traversal that stops when it finds what it is looking for.

sequence An ordered set; that is, a set of values where each value is identified by an
integer index.

slice A part of a string specified by a range of indices.

traverse To iterate through the items in a sequence, performing a similar operation on
each.

6.14 Exercises

Exercise 5: Take the following Python code that stores a string:
str = 'X-DSPAM-Confidence:0.8475'

Use find and string slicing to extract the portion of the string after the colon character
and then use the float function to convert the extracted string into a floating point num-
ber.

Exercise 6:
Read the documentation of the string methods at
https://docs.python.org/3.5/library/stdtypes.html#string-methods

You might want to experiment with some of them to make sure you understand how they
work. strip and replace are particularly useful.

The documentation uses a syntax that might be confusing. For example, in find (sub[,
start[, end]]), the brackets indicate optional arguments. So sub is required, but
start is optional, and if you include start, then end is optional.

https://docs.python.org/3.5/library/stdtypes.html#string-methods

68

CHAPTER 6. STRINGS

Chapter 7

Files

7.1 Persistence

So far, we have learned how to write programs and communicate our intentions to the
Central Processing Unit using conditional execution, functions, and iterations. We have
learned how to create and use data structures in the Main Memory. The CPU and memory
are where our software works and runs. It is where all of the “thinking” happens.

But if you recall from our hardware architecture discussions, once the power is turned off,
anything stored in either the CPU or main memory is erased. So up to now, our programs
have just been transient fun exercises to learn Python.

In this chapter, we start to work with Secondary Memory (or files). Secondary memory
is not erased when the power is turned off. Or in the case of a USB flash drive, the data
we write from our programs can be removed from the system and transported to another
system.

We will primarily focus on reading and writing text files such as those we create in a text
editor. Later we will see how to work with database files which are binary files, specifically
designed to be read and written through database software.

7.2 Opening files

When we want to read or write a file (say on your hard drive), we first must open the file.
Opening the file communicates with your operating system, which knows where the data
for each file is stored. When you open a file, you are asking the operating system to find
the file by name and make sure the file exists. In this example, we open the filembox . txt,
which should be stored in the same folder that you are in when you start Python. You can
download this file from www.py4e.com/code3/mbox.txt

>>> fhand = open('mbox.txt')
>>> print (fhand)
<_io.TextIOWrapper name='mbox.txt' mode='r' encoding='cp1252'>

69

http://www.py4e.com/code3/mbox.txt

70 CHAPTER 7. FILES

Software
Input and Central
Output Processing Network
Devices Unit
Main Secondary
Memory Memory

Figure 7.1: Secondary Memory

Y

close From stephen.m..
Return-Path: <p..

read Date: Sat, 5 Jan
To: source@coll..

write From: stephen...
Subject: [sakail...
Details: http:/...

Your p:/

Program _______________/

Figure 7.2: A File Handle

If the open is successful, the operating system returns us a file handle. The file handle is
not the actual data contained in the file, but instead itis a “handle” that we can use to
read the data. You are given a handle if the requested file exists and you have the proper
permissions to read the file.

If the file does not exist, open will fail with a traceback and you will not get a handle to
access the contents of the file:

>>> fhand = open('stuff.txt')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'stuff.txt'

Later we will use try and except to deal more gracefully with the situation where we
attempt to open a file that does not exist.

7.3. TEXT FILES AND LINES 71

7.3 Text files and lines

A text file can be thought of as a sequence of lines, much like a Python string can be
thought of as a sequence of characters. For example, this is a sample of a text file which
records mail activity from various individuals in an open source project development
team:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>

Date: Sat, 5 Jan 2008 09:12:18 -0500

To: source@collab.sakaiproject.org

From: stephen.marquard@uct.ac.za

Subject: [sakai] svn commit: r39772 - content/branches/

Details: http://source.sakaiproject.org/viewsvn/7view=rev&rev=39772

The entire file of mail interactions is available from
www.py4e.com/code3/mbox.txt

and a shortened version of the file is available from
www.py4e.com/code3/mbox-short.txt

These files are in a standard format for a file containing multiple mail messages. The lines
which start with “From” separate the messages and the lines which start with “From:”
are part of the messages. For more information about the mbox format, see en.wikipedia.
org/wiki/Mbox.

To break the file into lines, there is a special character that represents the “end of the
line” called the newline character.

In Python, we represent the newline character as a backslash-n in string constants. Even
though this looks like two characters, it is actually a single character. When we look at the
variable by entering “stuff” in the interpreter, it shows us the \n in the string, but when
we use print to show the string, we see the string broken into two lines by the newline
character.

>>> stuff = 'Hello\nWorld!'
>>> stuff
'Hello\nWorld!"
>>> print(stuff)
Hello

World!

>>> stuff = 'X\nY'
>>> print(stuff)

X

Y

>>> len(stuff)

3

You can also see that the length of the string X\nY is three characters because the newline
character is a single character.

So when we look at the lines in a file, we need to imagine that there is a special invisible
character called the newline at the end of each line that marks the end of the line.

http://www.py4e.com/code3/mbox.txt
http://www.py4e.com/code3/mbox-short.txt
en.wikipedia.org/wiki/Mbox
en.wikipedia.org/wiki/Mbox

72 CHAPTER 7. FILES

So the newline character separates the characters in the file into lines.

7.4 Reading files

While the file handle does not contain the data for the file, it is quite easy to construct a
for loop to read through and count each of the lines in a file:

fhand = open('mbox-short.txt')
count = 0O
for line in fhand:

count = count + 1
print('Line Count:', count)

Code: http://www.pyde.com/code3/open.py

We can use the file handle as the sequence in our for loop. Our for loop simply counts
the number of lines in the file and prints them out. The rough translation of the for loop
into English is, “for each line in the file represented by the file handle, add one to the
count variable.”

The reason that the open function does not read the entire file is that the file might be
quite large with many gigabytes of data. The open statement takes the same amount of
time regardless of the size of the file. The for loop actually causes the data to be read
from the file.

When the file is read using a for loop in this manner, Python takes care of splitting the
data in the file into separate lines using the newline character. Python reads each line
through the newline and includes the newline as the last character in the 1ine variable
for each iteration of the for loop.

Because the for loop reads the data one line at a time, it can efficiently read and count
the lines in very large files without running out of main memory to store the data. The
above program can count the lines in any size file using very little memory since each line
is read, counted, and then discarded.

If you know the file is relatively small compared to the size of your main memory, you can
read the whole file into one string using the read method on the file handle.

>>> fhand = open('mbox-short.txt')
>>> inp = fhand.read()

>>> print(len(inp))

94626

>>> print(inp[:20])

From stephen.marquar

In this example, the entire contents (all 94,626 characters) of the filembox-short . txt are
read directly into the variable inp. We use string slicing to print out the first 20 characters
of the string data stored in inp.

When the file is read in this manner, all the characters including all of the lines and new-
line characters are one big string in the variable inp. Remember that this form of the open

7.5. SEARCHING THROUGH A FILE 73

function should only be used if the file data will fit comfortably in the main memory of
your computer.

If the file is too large to fit in main memory, you should write your program to read the
file in chunks using a for or while loop.

7.5 Searching through a file

When you are searching through data in a file, it is a very common pattern to read through
afile, ignoring most of the lines and only processing lines which meet a particular condi-
tion. We can combine the pattern for reading a file with string methods to build simple
search mechanisms.

For example, if we wanted to read a file and only print out lines which started with the
prefix “From:” , we could use the string method startswith to select only those lines with
the desired prefix:

fhand = open('mbox-short.txt')
count = 0
for line in fhand:
if line.startswith('From:'):
print(line)

Code: http://www.pyse.com/code3/searchl.py
When this program runs, we get the following output:
From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zgianQumich.edu

From: rjlowe@iupui.edu

The output looks great since the only lines we are seeing are those which start with
“From:” , but why are we seeing the extra blank lines? This is due to that invisible
newline character. Each of the lines ends with a newline, so the print statement prints
the string in the variable line which includes a newline and then print adds another
newline, resulting in the double spacing effect we see.

We could use line slicing to print all but the last character, but a simpler approach is to
use the rstrip method which strips whitespace from the right side of a string as follows:

fhand = open('mbox-short.txt')
for line in fhand:
line = line.rstrip()
if line.startswith('From:'):
print(line)

Code: http://www.pyde.com/code3/search2.py

74 CHAPTER 7. FILES

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zgian@umich.edu

From: rjlowe@iupui.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

From: cwen@iupui.edu

As your file processing programs get more complicated, you may want to structure your
search loops using continue. The basic idea of the search loop is that you are looking
for “interesting” lines and effectively skipping “uninteresting” lines. And then when
we find an interesting line, we do something with that line.

We can structure the loop to follow the pattern of skipping uninteresting lines as follows:

fhand = open('mbox-short.txt')
for line in fhand:
line = line.rstrip()
Skip 'uninteresting lines'
if not line.startswith('From:'):
continue
Process our 'interesting' line
print(line)

Code: http://www.pyse.com/code3/search3.py

The output of the program is the same. In English, the uninteresting lines are those which
do not start with “From:” , which we skip using continue. For the “interesting” lines
(i.e., those that start with “From:”) we perform the processing on those lines.

We can use the find string method to simulate a text editor search that finds lines where
the search string is anywhere in the line. Since find looks for an occurrence of a string
within another string and either returns the position of the string or -1 if the string
was not found, we can write the following loop to show lines which contain the string
“@uct.ac.za” (i.e., they come from the University of Cape Town in South Africa):

fhand = open('mbox-short.txt')

for line in fhand:
line = line.rstrip()
if line.find('@uct.ac.za') == -1: continue
print(line)

Code: http://www.pyde.com/code3/searchs.py
Which produces the following output:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
X-Authentication-Warning: set sender to stephen.marquard@uct.ac.za using -f

7.6. LETTING THE USER CHOOSE THE FILE NAME 75

From: stephen.marquard@uct.ac.za

Author: stephen.marquardQuct.ac.za

From david.horwitz@uct.ac.za Fri Jan 4 07:02:32 2008
X-Authentication-Warning: set sender to david.horwitzQuct.ac.za using -f
From: david.horwitz@uct.ac.za

Author: david.horwitzQuct.ac.za

7.6 Letting the user choose the file name

We really do not want to have to edit our Python code every time we want to process a
different file. It would be more usable to ask the user to enter the file name string each
time the program runs so they can use our program on different files without changing
the Python code.

This is quite simple to do by reading the file name from the user using input as follows:

fname = input('Enter the file name: ')
fhand = open(fname)
count = 0
for line in fhand:
if line.startswith('Subject:'):
count = count + 1
print('There were', count, 'subject lines in', fname)

Code: http://www.pyse.com/code3/searchb.py

We read the file name from the user and place it in a variable named fname and open that
file. Now we can run the program repeatedly on different files.

python search6.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

python search6.py
Enter the file name: mbox-short.txt
There were 27 subject lines in mbox-short.txt

Before peeking at the next section, take a look at the above program and ask yourself,
“What could go possibly wrong here?” or “What might our friendly user do that would
cause our nice little program to ungracefully exit with a traceback, making us look not-
so-cool in the eyes of our users?”

7.7 Using try, except, and open

I told you not to peek. This is your last chance.

What if our user types something that is not a file name?

76 CHAPTER 7. FILES

python search6.py
Enter the file name: missing.txt
Traceback (most recent call last):
File "search6.py", line 2, in <module>
fhand = open(fname)
FileNotFoundError: [Errno 2] No such file or directory: 'missing.txt'

python search6.py
Enter the file name: na na boo boo
Traceback (most recent call last):
File "search6.py", line 2, in <module>
fhand = open(fname)
FileNotFoundError: [Errno 2] No such file or directory: 'na na boo boo'

Do not laugh. Users will eventually do every possible thing they can do to break your
programs, either on purpose or with malicious intent. As a matter of fact, an important
part of any software development team is a person or group called Quality Assurance (or
QA for short) whose very job it is to do the craziest things possible in an attempt to break
the software that the programmer has created.

The QA team is responsible for finding the flaws in programs before we have delivered
the program to the end users who may be purchasing the software or paying our salary to
write the software. So the QA team is the programmer’ s best friend.

So now that we see the flaw in the program, we can elegantly fix it using the try/except
structure. We need to assume that the open call might fail and add recovery code when
the open fails as follows:

fname = input('Enter the file name: ')

try:
fhand = open(fname)

except:
print('File cannot be opened:', fname)
exit ()

count = 0
for line in fhand:
if line.startswith('Subject:'):
count = count + 1
print('There were', count, 'subject lines in', fname)

Code: http://www.pyse.com/code3/search?.py

The exit function terminates the program. Itis a function that we call that never returns.
Now when our user (or QA team) types in silliness or bad file names, we “catch” them
and recover gracefully:

python search7.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

python search7.py
Enter the file name: na na boo boo
File cannot be opened: na na boo boo

7.8. WRITING FILES 77

Protecting the open call is a good example of the proper use of try and except in
a Python program. We use the term “Pythonic” when we are doing something the
“Python way” . We might say that the above example is the Pythonic way to open a file.

Once you become more skilled in Python, you can engage in repartee with other Python
programmers to decide which of two equivalent solutions to a problem is “more
Pythonic” . The goal to be “more Pythonic” captures the notion that programming is
part engineering and part art. We are not always interested in just making something
work, we also want our solution to be elegant and to be appreciated as elegant by our
peers.

7.8 Writing files

To write a file, you have to open it with mode “w” as a second parameter:

>>> fout = open('output.txt', 'w')
>>> print(fout)
<_io.TextIOWrapper name='output.txt' mode='w' encoding='cp1252'>

If the file already exists, opening it in write mode clears out the old data and starts fresh,
so be careful! If the file doesn’ t exist, a new one is created.

The write method of the file handle object puts data into the file, returning the number
of characters written. The default write mode is text for writing (and reading) strings.

>>> linel = "This here's the wattle,\n"
>>> fout.write(linel)
24

Again, the file object keeps track of where it is, so if you call write again, it adds the new
data to the end.

We must make sure to manage the ends of lines as we write to the file by explicitly insert-
ing the newline character when we want to end aline. The print statement automatically
appends a newline, but the write method does not add the newline automatically.

>>> line2 = 'the emblem of our land.\n'
>>> fout.write(line2)
24

When you are done writing, you have to close the file to make sure that the last bit of data
is physically written to the disk so it will not be lost if the power goes off.

>>> fout.close()

We could close the files which we open for read as well, but we can be a little sloppy if we
are only opening a few files since Python makes sure that all open files are closed when
the program ends. When we are writing files, we want to explicitly close the files so as to
leave nothing to chance.

78 CHAPTER 7. FILES

7.9 Debugging

When you are reading and writing files, you might run into problems with whitespace.
These errors can be hard to debug because spaces, tabs, and newlines are normally invis-
ible:

>>> s = '1 2\t 3\n 4'
>>> print(s)

12 3

4

The built-in function repr can help. It takes any object as an argument and returns a
string representation of the object. For strings, it represents whitespace characters with
backslash sequences:

>>> print(repr(s))
't 2\t 3\n 4'

This can be helpful for debugging.

One other problem you might run into is that different systems use different characters
to indicate the end of a line. Some systems use a newline, represented \n. Others use
a return character, represented \r. Some use both. If you move files between different
systems, these inconsistencies might cause problems.

For most systems, there are applications to convert from one format to another. You can
find them (and read more about this issue) at wikipedia.org/wiki/Newline. Or, of course,
you could write one yourself.

7.10 Glossary

catch To prevent an exception from terminating a program using the try and except
statements.

newline A special character used in files and strings to indicate the end of a line.

Pythonic A technique that works elegantly in Python. “Using try and except is the
Pythonic way to recover from missing files” .

Quality Assurance A person or team focused on insuring the overall quality of a software
product. QA is often involved in testing a product and identifying problems before
the product is released.

text file A sequence of characters stored in permanent storage like a hard drive.

7.11 Exercises

Exercise 1: Write a program to read through a file and print the contents of the file (line
by line) all in upper case. Executing the program will look as follows:

wikipedia.org/wiki/Newline

7.11. EXERCISES 79

python shout.py
Enter a file name: mbox-short.txt
FROM STEPHEN.MARQUARDQUCT.AC.ZA SAT JAN 5 09:14:16 2008
RETURN-PATH: <POSTMASTER@COLLAB.SAKAIPROJECT.ORG>
RECEIVED: FROM MURDER (MAIL.UMICH.EDU [141.211.14.90])
BY FRANKENSTEIN.MAIL.UMICH.EDU (CYRUS V2.3.8) WITH LMTPA;
SAT, 05 JAN 2008 09:14:16 -0500

You can download the file from
www.py4e.com/code3/mbox-short.txt

Exercise 2: Write a program to prompt for a file name, and then read through the file and
look for lines of the form:

X-DSPAM-Confidence:0.8475

When you encounter a line that starts with “X-DSPAM-Confidence:” pull apart the line
to extract the floating-point number on the line. Count these lines and then compute the
total of the spam confidence values from these lines. When you reach the end of the file,
print out the average spam confidence.

Enter the file name: mbox.txt
Average spam confidence: 0.894128046745

Enter the file name: mbox-short.txt
Average spam confidence: 0.750718518519

Test your file on the mbox . txt and mbox-short.txt files.

Exercise 3: Sometimes when programmers get bored or want to have a bit of fun, they
add a harmless Easter Egg to their program Modify the program that prompts the user for
the file name so that it prints a funny message when the user types in the exact file name
“na na boo boo” . The program should behave normally for all other files which exist
and don’ texist. Here is a sample execution of the program:

python egg.py
Enter the file name: mbox.txt

There were 1797 subject lines in mbox.txt

python egg.py
Enter the file name: missing.tyxt

File cannot be opened: missing.tyxt

python egg.py
Enter the file name: na na boo boo

NA NA BOO BOO TO YOU - You have been punk'd!

We are not encouraging you to put Easter Eggs in your programs; this is just an exercise.

http://www.py4e.com/code3/mbox-short.txt

80

CHAPTER 7. FILES

Chapter 8

Lists

8.1 Alistis asequence

Like a string, a list is a sequence of values. In a string, the values are characters; in a list,
they can be any type. The values in list are called elements or sometimes items.

There are several ways to create a new list; the simplest is to enclose the elements in
square brackets ([and]):

[10, 20, 30, 40]
['crunchy frog', 'ram bladder', 'lark vomit']
~~~~ {.python}

The first example is a list of four integers. The second is a list of
three strings. The elements of a list don't have to be the same type.
The following list contains a string, a float, an integer, and (lo!)
another list:

~~~~ {.python}
['spam', 2.0, 5, [10, 20]]

A list within another list is nested.

A list that contains no elements is called an empty list; you can create one with empty
brackets, [].

As you might expect, you can assign list values to variables:

['Cheddar', 'Edam', 'Gouda'l
[17, 123]

>>> cheeses
>>> numbers
>>> empty = []

>>> print(cheeses, numbers, empty)
['Cheddar', 'Edam', 'Gouda'l [17, 123] []

81

82 CHAPTER 8. LISTS
8.2 Lists are mutable

The syntax for accessing the elements of a list is the same as for accessing the characters
of a string: the bracket operator. The expression inside the brackets specifies the index.
Remember that the indices start at 0:

>>> print(cheeses[0])
Cheddar

Unlike strings, lists are mutable because you can change the order of items in a list or reas-
sign an item in a list. When the bracket operator appears on the left side of an assignment,
it identifies the element of the list that will be assigned.

>>> numbers = [17, 123]
>>> numbers([1] = 5
>>> print (numbers)

(17, 5]
The one-eth element of numbers, which used to be 123, is now 5.

You can think of a list as a relationship between indices and elements. This relationship
is called a mapping; each index “mapsto” one of the elements.

List indices work the same way as string indices:

Any integer expression can be used as an index.

If you try to read or write an element that does not exist, you get an IndexError.

If an index has a negative value, it counts backward from the end of the list.
The in operator also works on lists.

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> 'Edam' in cheeses

True

>>> 'Brie' in cheeses

False

8.3 Traversing a list

The most common way to traverse the elements of a list is with a for loop. The syntax is
the same as for strings:

for cheese in cheeses:
print (cheese)

8.4. LIST OPERATIONS 83

This works well if you only need to read the elements of the list. But if you want to write
or update the elements, you need the indices. A common way to do that is to combine the
functions range and len:

for i in range(len(numbers)):
numbers [i] = numbers[i] * 2

This loop traverses the listand updates each element. lenreturnsthe number of elements
in the list. range returns a list of indices from 0 to n — 1, where n is the length of the
list. Each time through the loop, i gets the index of the next element. The assignment
statement in the body uses i to read the old value of the element and to assign the new
value.

A for loop over an empty list never executes the body:

for x in empty:
print ('This never happens.')

Although a list can contain another list, the nested list still counts as a single element. The
length of this list is four:

['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'l, [1, 2, 3]]

8.4 List operations

The + operator concatenates lists:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>>c=a+b

>>> print(c)
[1, 2, 3, 4, 5, 6]

Similarly, the operator repeats a list a given number of times:

>>> [0] * 4

[o, o, o0, o]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats four times. The second example repeats the list three times.

84 CHAPTER 8. LISTS
8.5 Listslices

The slice operator also works on lists:

>>> t = [Ial b et 4! Te! lfl]
>>> t[1:3]

['b‘, 'C‘]

>>> t[:4]

[lal’ lbl’ ICI’ 'dl]

>>> t[3:]

['d‘ e! lfl]

If you omit the first index, the slice starts at the beginning. If you omit the second, the
slice goes to the end. So if you omit both, the slice is a copy of the whole list.

>>> t[:]
[la|, lbl, ICI’ ldl’ lel’ Ifl]

Since lists are mutable, it is often useful to make a copy before performing operations
that fold, spindle, or mutilate lists.

A slice operator on the left side of an assignment can update multiple elements:

S>> t = [Ial’ Ib', IC', Id', |e|’ lfl]
>>> t[1:3] = ['x', 'y']
>>> print (t)

[la|, 'X‘, lyl, ldl, lel, lfl]

8.6 List methods

Python provides methods that operate on lists. For example, append adds a new element
to the end of a list:

>>> t = [Ial’ I‘bl’ 'C']
>>> t.append('d')

>>> print(t)

[|a|’ lbl’ ICI, ldl]

extend takes a list as an argument and appends all of the elements:

>>> t1 = ['a', 'b', 'c'l]
>>> £2 ['d', 'e']

>>> t1.extend(t2)

>>> print(t1)

[la|’ lbl’ ICI’ ldl’ lel]

This example leaves t2 unmodified.

sort arranges the elements of the list from low to high:

8.7. DELETING ELEMENTS 85

>>> t = [ldl, 'C', Iel, 'b', |a|]
>>> t.sort()

>>> print(t)

[lal Ibl ICI Idl Iel]

Most list methods are void; they modify the list and return None. If you accidentally write
t = t.sort(), you will be disappointed with the result.

8.7 Deleting elements

There are several ways to delete elements from a list. If you know the index of the element
you want, you can use pop:

>>> t ['a', "', 'c']
>>> x = t.pop(1)

>>> print (%)

['a', 'c']

>>> print(x)

b

pop modifies the list and returns the element that was removed. If you don’ t provide an
index, it deletes and returns the last element.

If youdon’ tneed the removed value, you can use the del operator:

S>> ¢ = [lal’ 'b', 'C']
>>> del t[1]

>>> print(t)

[ta', 'c']

If you know the element you want to remove (but not the index), you can use remove:

>>> t = [lal’ 'b', 'Cl]
>>> t.remove('b')

>>> print (t)

[lal lcl]

The return value from remove is None.

To remove more than one element, you can use del with a slice index:
>>> t = [lal, 'b', ICI, Idl, |e|, 'f']

>>> del t[1:5]

>>> print(t)
[lal’ Ifl]

As usual, the slice selects all the elements up to, but not including, the second index.

86 CHAPTER 8. LISTS
8.8 Lists and functions

There are a number of built-in functions that can be used on lists that allow you to quickly
look through a list without writing your own loops:

>>> nums = [3, 41, 12, 9, 74, 15]
>>> print (len(nums))

6

>>> print (max (nums))

74

>>> print (min(nums))

3

>>> print (sum(nums))

154

>>> print (sum(nums)/len(nums))
25

The sum() function only works when the list elements are numbers. The other functions
(max (), len(), etc.) work with lists of strings and other types that can be comparable.

We could rewrite an earlier program that computed the average of a list of numbers en-
tered by the user using a list.

First, the program to compute an average without a list:

total 0
count = 0O
while (True):
inp = input('Enter a number: ')
if inp == 'done': break
value = float(inp)
total = total + value
count = count + 1

average = total / count
print('Average:', average)

Code: http://www.pyse.com/code3/avenum.py

In this program, we have count and total variables to keep the number and running
total of the user’ s numbers as we repeatedly prompt the user for a number.

We could simply remember each number as the user entered it and use built-in functions
to compute the sum and count at the end.

numlist = list()

while (True):
inp = input('Enter a number: ')
if inp == 'done': break
value = float(inp)
numlist.append(value)

8.9. LISTS AND STRINGS 87

average = sum(numlist) / len(numlist)
print('Average:', average)

Code: http://www.pyle.com/code3/avelist.py

We make an empty list before the loop starts, and then each time we have a number, we
append it to the list. At the end of the program, we simply compute the sum of the num-
bers in the list and divide it by the count of the numbers in the list to come up with the
average.

8.9 Lists and strings

A stringis a sequence of characters and a listis a sequence of values, but alist of characters
is not the same as a string. To convert from a string to a list of characters, you can use
list:

>>> g 'spam'
>>> t = list(s)
>>> print(t)
[lsl’ lpl’

Because list is the name of a built-in function, you should avoid using it as a variable
name. I also avoid the letter 1 because it looks too much like the number 1. So that’ s
why I use t.

The 1ist function breaks a string into individual letters. If you want to break a string into
words, you can use the split method:

>>> s 'pining for the fjords'
>>> t = s.split()

>>> print(t)

['pining', 'for', 'the', 'fjords']
>>> print(t[2])

the

Once you have used split to break the string into a list of words, you can use the index
operator (square bracket) to look at a particular word in the list.

You can call split with an optional argument called a delimiter that specifies which char-
acters to use as word boundaries. The following example uses a hyphen as a delimiter:

>>> s = 'spam-spam-spam'
>>> delimiter = '-'

>>> s.split(delimiter)
['spam', 'spam', 'spam']

join is the inverse of split. It takes a list of strings and concatenates the elements.
join is a string method, so you have to invoke it on the delimiter and pass the list as a
parameter:

88 CHAPTER 8. LISTS

>>> t = ['pining', 'for', 'the', 'fjords']
>>> delimiter = ' '

>>> delimiter.join(t)

'pining for the fjords'

In this case the delimiter is a space character, so join puts a space between words. To
concatenate strings without spaces, you can use the empty string, ” ” | as a delimiter.

8.10 Parsing lines

Usually when we are reading a file we want to do something to the lines other than just
printing the whole line. Often we want to find the “interesting lines” and then parse
the line to find some interesting part of the line. What if we wanted to print out the day
of the week from those lines that start with “From” ?

From stephen.marquard@uct.ac.zaSatJan 5 09:14:16 2008

The split method is very effective when faced with this kind of problem. We can write a
small program that looks for lines where the line starts with “From” , split those lines,
and then print out the third word in the line:

fhand = open('mbox-short.txt')
for line in fhand:
line = line.rstrip()
if not line.startswith('From '): continue
words = line.split()
print (words[2])

Code: http://www.pyse.com/code3/searchs.py

Here we also use the contracted form of the if statement where we put the continue
on the same line as the if. This contracted form of the if functions the same as if the
continue were on the next line and indented.

The program produces the following output:

Sat
Fri
Fri
Fri

Later, we will learn increasingly sophisticated techniques for picking the lines to work on
and how we pull those lines apart to find the exact bit of information we are looking for.

8.11 Objects and values

If we execute these assignment statements:

8.12. ALIASING 89

a— ‘banana’ a—y b
‘banana’
b —» ‘banana’ b—>

Figure 8.1: Variables and Objects

'banana’

[o)
nn

'banana’

we know that a and b both refer to a string, but we don’ t know whether they refer to the
same string. There are two possible states:

In one case, a and b refer to two different objects that have the same value. In the second
case, they refer to the same object.

To check whether two variables refer to the same object, you can use the is operator.

>>> a = 'banana'
>>> b = 'banana'
>>> a is b

True

In this example, Python only created one string object, and both a and b refer to it.

But when you create two lists, you get two objects:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b

False

In this case we would say that the two lists are equivalent, because they have the same ele-
ments, but notidentical, because they are not the same object. If two objects are identical,
they are also equivalent, but if they are equivalent, they are not necessarily identical.

Until now, we have been using “object” and “value” interchangeably, but it is more
precise to say that an object has a value. If you execute a = [1,2,3], a refers to a list
object whose value is a particular sequence of elements. If another list has the same
elements, we would say it has the same value.

8.12 Aliasing

If a refers to an object and you assign b = a, then both variables refer to the same object:

>>> a = [1, 2, 3]
>>> b = a
>>> b is a

True

90 CHAPTER 8. LISTS

The association of a variable with an object is called a reference. In this example, there
are two references to the same object.

An object with more than one reference has more than one name, so we say that the object
is aliased.

If the aliased object is mutable, changes made with one alias affect the other:

>>> b[0] = 17
>>> print(a)
(17, 2, 3]

Although this behavior can be useful, it is error-prone. In general, it is safer to avoid
aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this example:

'banana’

)
Il

b = 'banana'

it almost never makes a difference whether a and b refer to the same string or not.

8.13 List arguments

When you pass a list to a function, the function gets a reference to the list. If the function
modifies a list parameter, the caller sees the change. For example, delete_head removes
the first element from a list:

def delete_head(t):
del t[0]

Here' show itis used:

>>> letters = ['a', 'b', 'c']
>>> delete_head(letters)

>>> print(letters)

[lb 1 ' c 1]

The parameter t and the variable letters are aliases for the same object.

It is important to distinguish between operations that modify lists and operations that
create new lists. For example, the append method modifies a list, but the + operator
creates a new list:

>>> t1 [1, 2]

>>> t2 = t1.append(3)
>>> print(t1)

(1, 2, 3]

>>> print(t2)

8.14. DEBUGGING 91

None

>>> t3 = t1 + [3]
>>> print (t3)

[1, 2, 3]

>>> t2 is t3
False

This difference is important when you write functions that are supposed to modify lists.
For example, this function does not delete the head of a list:

def bad_delete_head(t):
t = t[l:] # WRONG!

The slice operator creates a new list and the assignment makes t refer to it, but none of
that has any effect on the list that was passed as an argument.

An alternative is to write a function that creates and returns a new list. For example, tail
returns all but the first element of a list:

def tail(t):
return t[1:]

This function leaves the original list unmodified. Here’ s how it is used:

>>> letters = ['a', 'b', 'c']
>>> rest = tail(letters)

>>> print(rest)

['b', 'c']

Exercise 1:

Write a function called chop that takes a list and modifies it, removing the first and last
elements, and returns None.

Then write a function called middle that takes a list and returns a new list that contains
all but the first and last elements.

8.14 Debugging

Careless use of lists (and other mutable objects) can lead to long hours of debugging. Here
are some common pitfalls and ways to avoid them:

1. Don’ tforgetthat most list methods modify the argument and return None. This is
the opposite of the string methods, which return a new string and leave the original
alone.

If you are used to writing string code like this:

word = word.strip()

92

CHAPTER 8. LISTS

It is tempting to write list code like this: ~~~~ {.python} t = t.sort() # WRONG! ~~~~
Because sort returns None, the next operation you perform with t is likely to fail.

Before using list methods and operators, you should read the documentation care-
fully and then test them in interactive mode. The methods and operators that lists
share with other sequences (like strings) are documented at https://docs.python.
org/2/library/stdtypes.html#string-methods. The methods and operators that only
apply to mutable sequences are documented at https://docs.python.org/2/library/
stdtypes.html#mutable-sequence-types.

. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many ways to do things. For
example, to remove an element from a list, you can use pop, remove, del, or even
a slice assignment.

To add an element, you can use the append method or the + operator. But don’ t
forget that these are right:

t.append (x)
t =t + [x]

And these are wrong:

t.append ([x]) # WRONG!
t = t.append(x) # WRONG!
t + [x] # WRONG!
t=1t +x # WRONG!

Try out each of these examples in interactive mode to make sure you understand
what they do. Notice that only the last one causes a runtime error; the other three
are legal, but they do the wrong thing.

. Make copies to avoid aliasing.

If you want to use a method like sort that modifies the argument, but you need to
keep the original list as well, you can make a copy.

orig = t[:]
t.sort()

In this example you could also use the built-in function sorted, which returns a
new, sorted list and leaves the original alone. But in that case you should avoid
using sorted as a variable name!

. Lists, split, and files

When we read and parse files, there are many opportunities to encounter input
that can crash our program so it is a good idea to revisit the guardian pattern when
it comes writing programs that read through a file and look for a “needle in the
haystack” .

Let’ s revisit our program that is looking for the day of the week on the from lines
of our file:

From stephen.marquard@uct.ac.zaSatJan 5 09:14:16 2008

https://docs.python.org/2/library/stdtypes.html#string-methods
https://docs.python.org/2/library/stdtypes.html#string-methods
https://docs.python.org/2/library/stdtypes.html#mutable-sequence-types
https://docs.python.org/2/library/stdtypes.html#mutable-sequence-types

8.14. DEBUGGING 93

Since we are breaking this line into words, we could dispense with the use of
startswith and simply look at the first word of the line to determine if we are
interested in the line at all. We can use continue to skip lines that don’ t have
“From” as the first word as follows:

fhand = open('mbox-short.txt')

for line in fhand:
words = line.split()
if words[0] != 'From' : continue
print (words[2])

This looks much simpler and we don’ t even need to do the rstrip to remove the
newline at the end of the file. But is it better?

python search8.py
Sat
Traceback (most recent call last):
File "search8.py", line 5, in <module>
if words[0] !'= 'From' : continue
IndexError: list index out of range

It kind of works and we see the day from the first line (Sat), but then the program
fails with a traceback error. What went wrong? What messed-up data caused our
elegant, clever, and very Pythonic program to fail?

You could stare at it for a long time and puzzle through it or ask someone for help,
but the quicker and smarter approach is to add a print statement. The best place
to add the print statement is right before the line where the program failed and
print out the data that seems to be causing the failure.

Now this approach may generate a lot of lines of output, but at least you will imme-
diately have some clue as to the problem at hand. So we add a print of the variable
words right before line five. We even add a prefix “Debug:” to the line so we can
keep our regular output separate from our debug output.

for line in fhand:
words = line.split()
print ('Debug:', words)
if words[0] != 'From' : continue
print (words[2])

When we run the program, a lot of output scrolls off the screen but at the end, we
see our debug output and the traceback so we know what happened just before the

traceback.
Debug: ['X-DSPAM-Confidence:', '0.8475']
Debug: ['X-DSPAM-Probability:', '0.0000']
Debug: []

Traceback (most recent call last):
File "search9.py", line 6, in <module>
if words[0] '= 'From' : continue
IndexError: list index out of range

94 CHAPTER 8. LISTS

Each debug line is printing the list of words which we get when we split the line
into words. When the program fails, the list of words is empty []. If we open the
file in a text editor and look at the file, at that point it looks as follows:

X-DSPAM-Result: Innocent

X-DSPAM-Processed: Sat Jan 5 09:14:16 2008
X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

The error occurs when our program encounters a blank line! Of course there are
“zero words” on a blank line. Why didn’ t we think of that when we were writing
the code? When the code looks for the first word (word [0]) to check to see if it
matches “From” , we getan “index out of range” error.

This of course is the perfect place to add some guardian code to avoid checking the
first word if the first word is not there. There are many ways to protect this code; we
will choose to check the number of words we have before we look at the first word:

fhand = open('mbox-short.txt')
count = 0O
for line in fhand:
words = line.split()
print 'Debug:', words
if len(words) == 0 : continue
if words[0] '= 'From' : continue
print (words[2])

First we commented out the debug print statement instead of removing it, in case
our modification fails and we need to debug again. Then we added a guardian state-
ment that checks to see if we have zero words, and if so, we use continue to skip
to the next line in the file.

We can think of the two continue statements as helping us refine the set of lines
which are “interesting” to us and which we want to process some more. A line
which has no words is “uninteresting” to us so we skip to the next line. A line
which does not have “From” as its first word is uninteresting to us so we skip it.

The program as modified runs successfully, so perhaps it is correct. Our guardian
statement does make sure that the words [0] will never fail, but perhaps it is not
enough. When we are programming, we must always be thinking, “What might
go wrong?”

Exercise 2: Figure out which line of the above program is still not properly guarded. See if
you can construct a text file which causes the program to fail and then modify the program
so that the line is properly guarded and test it to make sure it handles your new text file.

Exercise 3: Rewrite the guardian code in the above example without two if statements.
Instead, use a compound logical expression using the and logical operator with a single
if statement.

8.15. GLOSSARY 95
8.15 Glossary

aliasing A circumstance where two or more variables refer to the same object.
delimiter A character or string used to indicate where a string should be split.
element One of the values in a list (or other sequence); also called items.
equivalent Having the same value.

index An integer value that indicates an element in a list.

identical Being the same object (which implies equivalence).

list A sequence of values.

list traversal The sequential accessing of each element in a list.

nested list A list that is an element of another list.

object Something a variable can refer to. An object has a type and a value.
reference The association between a variable and its value.

8.16 Exercises

Exercise 4: Download a copy of the file from www.py4e.com/code3/romeo.txt

Write a program to open the file romeo. txt and read it line by line. For each line, split
the line into a list of words using the split function.

For each word, check to see if the word is already in a list. If the word is not in the list,
add it to the list.

When the program completes, sort and print the resulting words in alphabetical order.

Enter file: romeo.txt
['Arise', 'But', 'It', 'Juliet', 'Who', 'already',

'and', 'breaks', 'east', 'envious', 'fair', 'grief',
'is', 'kill', 'light', 'moon', 'pale', 'sick', 'soft',
'sun', 'the', 'through', 'what', 'window',

'with', 'yonder']

Exercise 5: Write a program to read through the mail box data and when you find line
that starts with “From” | you will split the line into words using the split function. We
are interested in who sent the message, which is the second word on the From line.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

You will parse the From line and print out the second word for each From line, then you
will also count the number of From (not From:) lines and print out a count at the end.

This is a good sample output with a few lines removed:

python fromcount.py

Enter a file name: mbox-short.txt
stephen.marquard@uct.ac.za
louis@media.berkeley.edu
zqian@umich.edu

[...some output removed...]

http://www.py4e.com/code3/romeo.txt

96 CHAPTER 8. LISTS

ray@media.berkeley.edu

cwen@iupui.edu

cwen@iupui.edu

cwen@iupui.edu

There were 27 lines in the file with From as the first word

Exercise 6: Rewrite the program that prompts the user for a list of numbers and prints out
the maximum and minimum of the numbers at the end when the user enters “done” .
Write the program to store the numbers the user enters in a list and use the max () and
min() functions to compute the maximum and minimum numbers after the loop com-
pletes.

Enter a number: 6
Enter a number: 2
Enter a number: 9
Enter a number: 3
Enter a number: 5
Enter a number: done

Maximum: 9.0
Minimum: 2.0

Chapter 9

Dictionaries

A dictionary is like a list, but more general. In a list, the index positions have to be inte-
gers; in a dictionary, the indices can be (almost) any type.

You can think of a dictionary as a mapping between a set of indices (which are called keys)
and a set of values. Each key maps to a value. The association of a key and a value is called
a key-value pair or sometimes an item.

As an example, we’ 1l build a dictionary that maps from English to Spanish words, so the
keys and the values are all strings.

The function dict creates a new dictionary with no items. Because dict is the name of
a built-in function, you should avoid using it as a variable name.

>>> eng2sp = dict()
>>> print (eng2sp)
{3

The curly brackets, {3}, represent an empty dictionary. To add items to the dictionary, you
can use square brackets:

>>> eng2spl['one'] = 'uno'

This line creates an item that maps from the key 'one' to the value “uno” . If we print
the dictionary again, we see a key-value pair with a colon between the key and value:

>>> print (eng2sp)
{'one': 'uno'}

This output format is also an input format. For example, you can create a new dictionary
with three items. But if you print eng2sp, you might be surprised:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}
>>> print (eng2sp)
{'one': 'uno', 'three': 'tres', 'two': 'dos'}

97

98 CHAPTER 9. DICTIONARIES

The order of the key-value pairs is not the same. In fact, if you type the same example
on your computer, you might get a different result. In general, the order of items in a
dictionary is unpredictable.

But that’ s not a problem because the elements of a dictionary are never indexed with
integer indices. Instead, you use the keys to look up the corresponding values:

>>> print(eng2sp['two'])
'dos’

The key 'two' always maps to the value “dos” sothe order of the items doesn’ tmatter.

If the key isn’ tin the dictionary, you get an exception:

>>> print(eng2sp['four'])
KeyError: 'four'

The 1en function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng2sp)
3

The in operator works on dictionaries; it tells you whether something appears as a key in
the dictionary (appearing as a value is not good enough).

>>> 'one' in eng2sp
True
>>> 'uno' in eng2sp
False

To see whether something appears as a value in a dictionary, you can use the method
values, which returns the values as a list, and then use the in operator:

>>> vals = list(eng2sp.values())
>>> 'uno' in vals
True

The in operator uses different algorithms for lists and dictionaries. For lists, it uses a lin-
ear search algorithm. As the list gets longer, the search time gets longer in direct propor-
tion to the length of the list. For dictionaries, Python uses an algorithm called a hash table
that has a remarkable property: the in operator takes about the same amount of time no
matter how many items there are in a dictionary. I won’ t explain why hash functions
are so magical, but you can read more about it at wikipedia.org/wiki/Hash_table.

Exercise 1: [wordlist2]

Write a program that reads the words in words. txt and stores them as keys in a dictio-
nary. It doesn’ t matter what the values are. Then you can use the in operator as a fast
way to check whether a string is in the dictionary.

wikipedia.org/wiki/Hash_table

9.1. DICTIONARY AS A SET OF COUNTERS 99
9.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how many times each letter appears.
There are several ways you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then you could
traverse the string and, for each character, increment the corresponding counter,
probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each character to
anumber (using the built-in function ord), use the number as an index into the list,
and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the corre-
sponding values. The first time you see a character, you would add an item to the
dictionary. After that you would increment the value of an existing item.

Each of these options performs the same computation, but each of them implements that
computation in a different way.

An implementation is a way of performing a computation; some implementations are
better than others. For example, an advantage of the dictionary implementation is that
we don’ t have to know ahead of time which letters appear in the string and we only have
to make room for the letters that do appear.

Here is what the code might look like:

word = 'brontosaurus'
d = dict()
for ¢ in word:
if ¢ not imn d:
dfc] =1
else:
dlc] = dlc] + 1
print(d)

We are effectively computing a histogram, which is a statistical term for a set of counters
(or frequencies).

The for loop traverses the string. Each time through the loop, if the character c is not in
the dictionary, we create a new item with key c and the initial value 1 (since we have seen
this letter once). If c is already in the dictionary we increment d [c].

Here’ s the output of the program:
{'a': 1, '"p': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}
The histogram indicates that the letters 'a' and “b” appear once; “0” appears twice,

and so on.

Dictionaries have a method called get that takes a key and a default value. If the key
appears in the dictionary, get returns the corresponding value; otherwise it returns the
default value. For example:

100 CHAPTER 9. DICTIONARIES

>>> counts = { 'chuck' : 1 , 'annie' : 42, '

>>> print(counts.get('jan', 0))
100

>>> print(counts.get('tim', 0))
0

jan': 100}

We can use get to write our histogram loop more concisely. Because the get method
automatically handles the case where a key is not in a dictionary, we can reduce four
lines down to one and eliminate the if statement.

word = 'brontosaurus'
d = dict()
for ¢ in word:
dlc] = d.get(c,0) + 1
print(d)

The use of the get method to simplify this counting loop ends up being a very commonly
used “idiom” in Python and we will use it many times in the rest of the book. So you
should take a moment and compare the loop using the if statement and in operator with
the loop using the get method. They do exactly the same thing, but one is more succinct.

9.2 Dictionaries and files

One of the common uses of a dictionary is to count the occurrence of words in a file with
some written text. Let’ s start with a very simple file of words taken from the text of
Romeo and Juliet.

For the first set of examples, we will use a shortened and simplified version of the text with
no punctuation. Later we will work with the text of the scene with punctuation included.

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

We will write a Python program to read through the lines of the file, break each line into
a list of words, and then loop through each of the words in the line and count each word
using a dictionary.

You will see that we have two for loops. The outer loop is reading the lines of the file and
the inner loop is iterating through each of the words on that particular line. This is an
example of a pattern called nested loops because one of the loops is the outer loop and
the other loop is the inner loop.

Because the inner loop executes all of its iterations each time the outer loop makes a single
iteration, we think of the inner loop as iterating “more quickly” and the outer loop as
iterating more slowly.

The combination of the two nested loops ensures that we will count every word on every
line of the input file.

9.3. LOOPING AND DICTIONARIES 101

fname = input('Enter the file name: ')

try:
fhand = open(fname)

except:
print('File cannot be opened:', fname)
exit ()

counts = dict()
for line in fhand:
words = line.split()
for word in words:
if word not in counts:
counts[word] = 1
else:
counts[word] += 1

print (counts)
Code: http://www.pyde.com/code3/countl.py

When we run the program, we see a raw dump of all of the counts in unsorted hash order.
(the romeo . txt file is available at www.py4e.com/code3/romeo.txt)

python countl.py

Enter the file name: romeo.txt

{'and': 3, 'envious': 1, 'already': 1, 'fair': 1,

'is': 3, 'through': 1, 'pale': 1, 'yonder': 1,

'what': 1, 'sun': 2, 'Who': 1, 'But': 1, 'moon': 1,
'window': 1, 'sick': 1, 'east': 1, 'breaks': 1,
'grief': 1, 'with': 1, 'light': 1, 'It': 1, 'Arise': 1,
'kill': 1, 'the': 3, 'soft': 1, 'Juliet': 1}

It is a bit inconvenient to look through the dictionary to find the most common words and
their counts, so we need to add some more Python code to get us the output that will be
more helpful.

9.3 Looping and dictionaries

If you use a dictionary as the sequence in a for statement, it traverses the keys of the
dictionary. This loop prints each key and the corresponding value:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}
for key in counts:
print(key, counts[keyl)

Here’ s what the output looks like:
jan 100

chuck 1
annie 42

http://www.py4e.com/code3/romeo.txt

102 CHAPTER 9. DICTIONARIES

Again, the keys are in no particular order.

We can use this pattern to implement the various loop idioms that we have described
earlier. For example if we wanted to find all the entries in a dictionary with a value above
ten, we could write the following code:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}
for key in counts:
if counts[key] > 10 :
print (key, counts[key])

The for loop iterates through the keys of the dictionary, so we must use the index operator
to retrieve the corresponding value for each key. Here’ s what the output looks like:

jan 100
annie 42

We see only the entries with a value above 10.

If you want to print the keys in alphabetical order, you first make a list of the keys in the
dictionary using the keys method available in dictionary objects, and then sort that list
and loop through the sorted list, looking up each key and printing out key-value pairs in
sorted order as follows:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}
1st = list(counts.keys())

print(1lst)

lst.sort()

for key in 1st:
print (key, counts[keyl)

Here’ s what the output looks like:

['jan', 'chuck', 'annie']
annie 42

chuck 1

jan 100

First you see the list of keys in unsorted order that we get from the keys method. Then
we see the key-value pairs in order from the for loop.

9.4 Advanced text parsing

In the above example using the file romeo.txt, we made the file as simple as possible
by removing all punctuation by hand. The actual text has lots of punctuation, as shown
below.

9.4. ADVANCED TEXT PARSING 103

But, soft! what light through yonder window breaks?
It is the east, and Juliet is the sun.

Arise, fair sun, and kill the envious moon,

Who is already sick and pale with grief,

Since the Python split function looks for spaces and treats words as tokens separated
by spaces, we would treat the words “soft!” and “soft” as different words and create
a separate dictionary entry for each word.

Also since the file has capitalization, we would treat “who” and “Who” as different
words with different counts.

We can solve both these problems by using the string methods lower, punctuation, and
translate. The translate is the most subtle of the methods. Here is the documenta-
tion for translate:

line.translate(str.maketrans(fromstr, tostr, deletestr))

Replace the characters in fromstr with the character in the same position in tostr
and delete all characters that are in deletestr. The fromstr and tostr can be empty
strings and the deletestr parameter can be omitted.

We will not specify the table but we will use the deletechars parameter to delete all
of the punctuation. We will even let Python tell us the list of characters that it considers
“punctuation” :

>>> import string
>>> string.punctuation

TITHEZEN O+, = /0 ;<=>2Q[\\] _ { [}~

The parameters used by translate were different in Python 2.0.

We make the following modifications to our program:

import string

fname = input('Enter the file name: ')

try:
fhand = open(fname)

except:
print('File cannot be opened:', fname)
exit ()

counts = dict()
for line in fhand:
line = line.rstrip(Q)
line = line.translate(line.maketrans('', '', string.punctuation))
line = line.lower()
words = line.split()
for word in words:
if word not in counts:
counts [word] = 1
else:

104 CHAPTER 9. DICTIONARIES

counts [word] += 1
print (counts)

Code: http://www.pyie.com/code3/count2. py

Part of learning the “Art of Python” or “Thinking Pythonically” is realizing that
Python often has built-in capabilities for many common data analysis problems. Over
time, you will see enough example code and read enough of the documentation to know
where to look to see if someone has already written something that makes your job much
easier.

The following is an abbreviated version of the output:

Enter the file name: romeo-full.txt

{'swearst': 1, 'all': 6, 'afeard': 1, 'leave': 2, 'these': 2,
'kinsmen': 2, 'what': 11, 'thinkst': 1, 'love': 24, 'cloak': 1,
a': 24, 'orchard': 2, 'light': 5, 'lovers': 2, 'romeo': 40,
'maiden': 1, 'whiteupturned': 1, 'juliet': 32, 'gentleman': 1,
'it': 22, 'leams': 1, 'canst': 1, 'having': 1, ...}

Looking through this output is still unwieldy and we can use Python to give us exactly
what we are looking for, but to do so, we need to learn about Python tuples. We will pick
up this example once we learn about tuples.

9.5 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing and check-
ing data by hand. Here are some suggestions for debugging large datasets:

Scale down the input If possible, reduce the size of the dataset. For example if the pro-
gram reads a text file, start with just the first 10 lines, or with the smallest example
you can find. You can either edit the files themselves, or (better) modify the pro-
gram so it reads only the first n lines.

If there is an error, you can reduce n to the smallest value that manifests the error,
and then increase it gradually as you find and correct errors.

Check summaries and types Instead of printing and checking the entire dataset, con-
sider printing summaries of the data: for example, the number of items in a dictio-
nary or the total of a list of numbers.

A common cause of runtime errors is a value that is not the right type. For debug-
ging this kind of error, it is often enough to print the type of a value.

Write self-checks Sometimes you can write code to check for errors automatically. For
example, if you are computing the average of a list of numbers, you could check that
the result is not greater than the largest element in the list or less than the smallest.
This is called a “sanity check” because it detects results that are “completely
illogical” .

Another kind of check compares the results of two different computations to see if
they are consistent. This is called a “consistency check” .

9.6. GLOSSARY 105

Pretty print the output Formatting debugging output can make it easier to spot an error.

Again, time you spend building scaffolding can reduce the time you spend debugging.

9.6 Glossary

dictionary A mapping from a set of keys to their corresponding values.

hashtable The algorithm used to implement Python dictionaries.

hash function A function used by a hashtable to compute the location for a key.

histogram A set of counters.

implementation A way of performing a computation.

item Another name for a key-value pair.

key An object that appears in a dictionary as the first part of a key-value pair.

key-value pair The representation of the mapping from a key to a value.

lookup A dictionary operation that takes a key and finds the corresponding value.

nested loops When there are one or more loops “inside” of another loop. The inner
loop runs to completion each time the outer loop runs once.

value An object that appears in a dictionary as the second part of a key-value pair. This
is more specific than our previous use of the word “value” .

9.7 Exercises

Exercise 2: Write a program that categorizes each mail message by which day of the week
the commit was done. To do this look for lines that start with “From” , then look for the
third word and keep a running count of each of the days of the week. At the end of the
program print out the contents of your dictionary (order does not matter).

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Sample Execution:

python dow.py
Enter a file name: mbox-short.txt
{'Fri': 20, 'Thu': 6, 'Sat': 1}

Exercise 3: Write a program to read through a mail log, build a histogram using a dic-
tionary to count how many messages have come from each email address, and print the
dictionary.

Enter file name: mbox-short.txt

{'gopal.ramasammycook@gmail.com': 1, 'louis@media.berkeley.edu': 3,
'cwen@iupui.edu': 5, 'antranig@caret.cam.ac.uk': 1,
'rjlowe@iupui.edu': 2, 'gsilverQumich.edu': 3,
'david.horwitz@uct.ac.za': 4, 'wagnermr@iupui.edu': 1,
'zqian@umich.edu': 4, 'stephen.marquard@uct.ac.za': 2,
'rayOmedia.berkeley.edu': 1}

106 CHAPTER 9. DICTIONARIES

Exercise 4: Add code to the above program to figure out who has the most messages in
the file.

After all the data has been read and the dictionary has been created, look through the
dictionary using a maximum loop (see Section [maximumloop]) to find who has the most
messages and print how many messages the person has.

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zqian@umich.edu 195

Exercise 5: This program records the domain name (instead of the address) where the
message was sent from instead of who the mail came from (i.e., the whole email address).
At the end of the program, print out the contents of your dictionary.

python schoolcount.py

Enter a file name: mbox-short.txt

{'media.berkeley.edu': 4, 'uct.ac.za': 6, 'umich.edu': 7,
'gmail.com': 1, 'caret.cam.ac.uk': 1, 'iupui.edu': 8}

Chapter 10

Tuples

10.1 Tuples are immutable

A tuple! is a sequence of values much like a list. The values stored in a tuple can be
any type, and they are indexed by integers. The important difference is that tuples are
immutable. Tuples are also comparable and hashable so we can sort lists of them and use
tuples as key values in Python dictionaries.

Syntactically, a tuple is a comma-separated list of values:
>>>t= la|, lb|’ 'C‘, ldl’ |e|

Although it is not necessary, it is common to enclose tuples in parentheses to help us
quickly identify tuples when we look at Python code:

>>> ¢ = (lal’ lbl, 'CI, ‘d', |e|)

To create a tuple with a single element, you have to include the final comma:
>>> t1 = ('a',)

>>> type(tl)

<type 'tuple'>

Without the comma Python treats ('a') as an expression with a string in parentheses
that evaluates to a string:

>>> 12 = ('a')
>>> type(t2)
<type 'str'>

Another way to construct a tuple is the built-in function tuple. With no argument, it
creates an empty tuple:

'Fun fact: The word “tuple” comes from the names given to sequences of numbers of varying lengths:
single, double, triple, quadruple, quituple, sextuple, septuple, etc.

107

108 CHAPTER 10. TUPLES

>>> t = tuple()
>>> print (t)
O

If the argument is a sequence (string, list, or tuple), the result of the call to tuple is a
tuple with the elements of the sequence:

>>> t = tuple('lupins')
>>> print ()
(|l|, |u|’ |p|’ |i|’ 'nl’ ISI)

Because tuple is the name of a constructor, you should avoid using it as a variable name.

Most list operators also work on tuples. The bracket operator indexes an element:

>>> ¢ = (Ial’ 'b', 'c', 'd', re')
>>> print (t[0])

[

a
And the slice operator selects a range of elements.

>>> print (t[1:3])
(lb‘, 'C')

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = 'A!
TypeError: object doesn't support item assignment

You can’ t modify the elements of a tuple, but you can replace one tuple with another:

>>> t = ("A',) + t[1:]
>>> print (t)
(IA|’ lbl’ ICI’ ldl’ Iel)

10.2 Comparing tuples

The comparison operators work with tuples and other sequences. Python starts by com-
paring the first element from each sequence. If they are equal, it goes on to the next
element, and so on, until it finds elements that differ. Subsequent elements are not con-
sidered (even if they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)
True

10.2. COMPARING TUPLES 109
The sort function works the same way. It sorts primarily by first element, but in the case
of a tie, it sorts by second element, and so on.

This feature lends itself to a pattern called DSU for

Decorate asequence by building a list of tuples with one or more sort keys preceding the
elements from the sequence,

Sort the list of tuples using the Python built-in sort, and

Undecorate by extracting the sorted elements of the sequence.

[DSU]

For example, suppose you have a list of words and you want to sort them from longest to
shortest:

txt = 'but soft what light in yonder window breaks'
words = txt.split()
t = list()
for word in words:
t.append ((len(word), word))

t.sort (reverse=True)

res = list()
for length, word in t:
res.append (word)

print(res)

Code: http://www.pyse.com/code3/soft.py

The first loop builds a list of tuples, where each tuple is a word preceded by its length.

sort compares the first element, length, first, and only considers the second element to
break ties. The keyword argument reverse=True tells sort to go in decreasing order.

The second loop traverses the list of tuples and builds a list of words in descending order
of length. The four-character words are sorted in reverse alphabetical order, so “what”
appears before “soft” in the following list.

The output of the program is as follows:

['yonder', 'window', 'breaks', 'light', 'what',
'soft', 'but', 'in']

Of course the line loses much of its poetic impact when turned into a Python list and
sorted in descending word length order.

110 CHAPTER 10. TUPLES
10.3 Tuple assignment

One of the unique syntactic features of the Python language is the ability to have a tuple
on the left side of an assignment statement. This allows you to assign more than one
variable at a time when the left side is a sequence.

In this example we have a two-element list (which is a sequence) and assign the first and
second elements of the sequence to the variables x and y in a single statement.

>>>m = ['have', 'fun']
>>> x, y=nm

>>> x

'have '

>>> y

Ifunl

>>>

Itis not magic, Python roughly translates the tuple assignment syntax to be the following:?

>>>m
>>> x
>>> y
>>> X
"have'
>>> y
'fun !
>>>

['have', 'fun']
m[0]
m[1]

Stylistically when we use a tuple on the left side of the assignment statement, we omit the
parentheses, but the following is an equally valid syntax:

>>>m = ['have', 'fun']
>>> (x, y) =m

>>> X

'have'

>>> y

fun '

>>>

A particularly clever application of tuple assignment allows us to swap the values of two
variables in a single statement:

>>> a, b =D>b, a

Both sides of this statement are tuples, but the left side is a tuple of variables; the right
side is a tuple of expressions. Each value on the right side is assigned to its respective

2python does not translate the syntax literally. For example, if you try this with a dictionary, it will not work
as might expect.

10.4. DICTIONARIES AND TUPLES 111

variable on the left side. All the expressions on the right side are evaluated before any of
the assignments.

The number of variables on the left and the number of values on the right must be the
same:

>>>a, b=1, 2, 3
ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list, or tuple). For
example, to split an email address into a user name and a domain, you could write:

>>> addr = 'monty@python.org'
>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the first element is assigned to
uname, the second to domain.

>>> print (uname)
monty

>>> print (domain)
python.org

10.4 Dictionaries and tuples

Dictionaries have a method called items that returns a list of tuples, where each tuple is
a key-value pair:

>>> d {'a':10, 'b':1, 'c':22}
>>> t = list(d.items())

>>> print(t)

[('b', 1), (a', 10), ('c', 22)]

As you should expect from a dictionary, the items are in no particular order.

However, since the list of tuples is a list, and tuples are comparable, we can now sort
the list of tuples. Converting a dictionary to a list of tuples is a way for us to output the
contents of a dictionary sorted by key:

>>>d = {'a':10, 'b':1, 'c':22}
>>> t = list(d.items())
>>> ¢

[("b', 1), (ta', 10), ('c', 22)]
>>> t.sort()

>>> t

[C(ta', 10), ('b', 1), ('c', 22)]

The new list is sorted in ascending alphabetical order by the key value.

112 CHAPTER 10. TUPLES
10.5 Multiple assignment with dictionaries

Combining items, tuple assignment, and for, you can see a nice code pattern for travers-
ing the keys and values of a dictionary in a single loop:

for key, val in list(d.items()):
print(val, key)

This loop has two iteration variables because items returns a list of tuples and key, val
is a tuple assignment that successively iterates through each of the key-value pairs in the
dictionary.

For each iteration through the loop, both key and value are advanced to the next key-
value pair in the dictionary (still in hash order).

The output of this loop is:

10 a
22 ¢
1b

Again, it is in hash key order (i.e., no particular order).

If we combine these two techniques, we can print out the contents of a dictionary sorted
by the value stored in each key-value pair.

To do this, we first make a list of tuples where each tuple is (value, key). The items
method would give us a list of (key, value) tuples, but this time we want to sort by
value, not key. Once we have constructed the list with the value-key tuples, it is a simple
matter to sort the list in reverse order and print out the new, sorted list.

>>> d {'a':10, 'b':1, 'c':22}

>>> 1 = 1ist()

>>> for key, val in d.items()
l.append((val, key))

>>> 1

[(10, 'a'), (22, 'c¢'), (1, 'b")]
>>> 1.sort(reverse=True)

>>> 1

[(22, 'c¢"), (10, 'a'), (1, '"]
>>>

By carefully constructing the list of tuples to have the value as the first element of each
tuple, we can sort the list of tuples and get our dictionary contents sorted by value.

10.6 The most common words

Coming back to our running example of the text from Romeo and Juliet Act 2, Scene 2, we
can augment our program to use this technique to print the ten most common words in
the text as follows:

10.6. THE MOST COMMON WORDS 113

import string
fhand = open('romeo-full.txt')
counts = dict()
for line in fhand:
line = line.translate(str.maketrans('', '', string.punctuation))
line = line.lower()
words = line.split()
for word in words:
if word not in counts:
counts[word] = 1
else:
counts [word] += 1

Sort the dictionary by wvalue

1st = 1ist O

for key, val in list(counts.items()):
1lst.append((val, key))

1st.sort(reverse=True)

for key, val in 1lst[:10]:
print(key, val)

Code: http://www.pyle.com/code3/count3.py

The first part of the program which reads the file and computes the dictionary that maps
each word to the count of words in the document is unchanged. But instead of simply
printing out counts and ending the program, we construct a list of (val, key) tuples
and then sort the list in reverse order.

Since the value is first, it will be used for the comparisons. If there is more than one tuple
with the same value, it will look at the second element (the key), so tuples where the value
is the same will be further sorted by the alphabetical order of the key.

At the end we write a nice for loop which does a multiple assignment iteration and prints
out the ten most common words by iterating through a slice of the list (st [:10]).

So now the output finally looks like what we want for our word frequency analysis.

61 i

42 and
40 romeo
34 to

34 the

32 thou
32 juliet
30 that
29 my

24 thee

The fact that this complex data parsing and analysis can be done with an easy-to-
understand 19-line Python program is one reason why Python is a good choice as a
language for exploring information.

114 CHAPTER 10. TUPLES
10.7 Using tuples as keys in dictionaries

Because tuples are hashable and lists are not, if we want to create a composite key to use
in a dictionary we must use a tuple as the key.

We would encounter a composite key if we wanted to create a telephone directory that
maps from last-name, first-name pairs to telephone numbers. Assuming that we have
defined the variables last, first, and number, we could write a dictionary assignment
statement as follows:

directory[last,first] = number

The expression in brackets is a tuple. We could use tuple assignment in a for loop to
traverse this dictionary.

for last, first in directory:
print(first, last, directory[last,first])

This loop traverses the keys in directory, which are tuples. It assigns the elements of
each tuple to last and first, then prints the name and corresponding telephone num-
ber.

10.8 Sequences: strings, lists, and tuples - Oh My!

I have focused on lists of tuples, but almost all of the examples in this chapter also work
with lists of lists, tuples of tuples, and tuples of lists. To avoid enumerating the possible
combinations, it is sometimes easier to talk about sequences of sequences.

In many contexts, the different kinds of sequences (strings, lists, and tuples) can be used
interchangeably. So how and why do you choose one over the others?

To start with the obvious, strings are more limited than other sequences because the ele-
ments have to be characters. They are also immutable. If you need the ability to change
the characters in a string (as opposed to creating a new string), you might want to use a
list of characters instead.

Lists are more common than tuples, mostly because they are mutable. But there are a few
cases where you might prefer tuples:

1. In some contexts, like a return statement, it is syntactically simpler to create a
tuple than a list. In other contexts, you might prefer a list.

2. If you want to use a sequence as a dictionary key, you have to use an immutable
type like a tuple or string.

3. If you are passing a sequence as an argument to a function, using tuples reduces
the potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’ t provide methods like sort and reverse,
which modify existing lists. However Python provides the built-in functions sorted and
reversed, which take any sequence as a parameter and return a new sequence with the
same elements in a different order.

10.9. DEBUGGING 115
10.9 Debugging

Lists, dictionaries and tuples are known generically as data structures; in this chapter
we are starting to see compound data structures, like lists of tuples, and dictionaries that
contain tuples as keys and lists as values. Compound data structures are useful, but they
are prone to what I call shape errors; that is, errors caused when a data structure has the
wrong type, size, or composition, or perhaps you write some code and forget the shape of
your data and introduce an error.

For example, if you are expecting a list with one integer and I give you a plain old integer
(not in a list), it won’ t work.

When you are debugging a program, and especially if you are working on a hard bug, there
are four things to try:

reading Examine your code, read it back to yourself, and check that it says what you
meant to say.

running Experiment by making changes and running different versions. Often if you dis-
play the right thing at the right place in the program, the problem becomes obvious,
but sometimes you have to spend some time to build scaffolding.

ruminating Take some time to think! What kind of error isit: syntax, runtime, semantic?
What information can you get from the error messages, or from the output of the
program? What kind of error could cause the problem you’ re seeing? What did
you change last, before the problem appeared?

retreating At some point, the best thing to do is back off, undoing recent changes, until
you get back to a program that works and that you understand. Then you can start
rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget the
others. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographical error, but
not if the problem is a conceptual misunderstanding. If youdon’ tunderstand what your
program does, you can read it 100 times and never see the error, because the error is in
your head.

Running experiments can help, especially if you run small, simple tests. But if you run
experiments without thinking or reading your code, you might fall into a pattern I call
“random walk programming” , which is the process of making random changes until
the program does the right thing. Needless to say, random walk programming can take a
long time.

You have to take time to think. Debugging is like an experimental science. You should
have at least one hypothesis about what the problem is. If there are two or more possibil-
ities, try to think of a test that would eliminate one of them.

Taking a break helps with the thinking. So does talking. If you explain the problem to
someone else (or even to yourself), you will sometimes find the answer before you finish
asking the question.

But even the best debugging techniques will fail if there are too many errors, or if the code
you are trying to fix is too big and complicated. Sometimes the best option is to retreat,
simplifying the program until you get to something that works and that you understand.

116 CHAPTER 10. TUPLES

Beginning programmers are often reluctant to retreat because they can’ t stand to delete
a line of code (even if it" s wrong). If it makes you feel better, copy your program into
another file before you start stripping it down. Then you can paste the pieces back in a
little bit at a time.

Finding a hard bug requires reading, running, ruminating, and sometimes retreating. If
you get stuck on one of these activities, try the others.

10.10 Glossary

comparable A type where one value can be checked to see if it is greater than, less than,
or equal to another value of the same type. Types which are comparable can be put
in a list and sorted.

data structure A collection of related values, often organized in lists, dictionaries, tuples,
etc.

DSU Abbreviation of “decorate-sort-undecorate” , a pattern that involves building a list
of tuples, sorting, and extracting part of the result.

gather The operation of assembling a variable-length argument tuple.

hashable A type that has a hash function. Immutable types like integers, floats, and
strings are hashable; mutable types like lists and dictionaries are not.

scatter The operation of treating a sequence as a list of arguments.

shape (of a data structure) A summary of the type, size, and composition of a data struc-
ture.

singleton A list (or other sequence) with a single element.

tuple An immutable sequence of elements.

tuple assignment An assignment with a sequence on the right side and a tuple of vari-
ables on the left. The right side is evaluated and then its elements are assigned to
the variables on the left.

10.11 Exercises

Exercise 1: Revise a previous program as follows: Read and parse the “From” lines and
pull out the addresses from the line. Count the number of messages from each person
using a dictionary.

After all the data has been read, print the person with the most commits by creating a list
of (count, email) tuples from the dictionary. Then sort the list in reverse order and print
out the person who has the most commits.

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zqian@umich.edu 195

Exercise 2: This program counts the distribution of the hour of the day for each of the
messages. You can pull the hour from the “From” line by finding the time string and

10.11. EXERCISES 117

then splitting that string into parts using the colon character. Once you have accumulated
the counts for each hour, print out the counts, one per line, sorted by hour as shown
below.

Sample Execution:

python timeofday.py

Enter a file name: mbox-short.txt
04 3

06
o7
09
10
11
14
15
16
17
18
19

P P, NPANPRP,OWN R -

Exercise 3: Write a program that reads a file and prints the letters in decreasing order
of frequency. Your program should convert all the input to lower case and only count
the letters a-z. Your program should not count spaces, digits, punctuation, or anything
other than the letters a-z. Find text samples from several different languages and see
how letter frequency varies between languages. Compare your results with the tables at
wikipedia.org/wiki/Letter_frequencies.

wikipedia.org/wiki/Letter_frequencies

118 CHAPTER 10. TUPLES

Chapter 11

Regular expressions

So far we have been reading through files, looking for patterns and extracting various bits
of lines that we find interesting. We have been

using string methods like split and find and using lists and string slicing to extract
portions of the lines.

This task of searching and extracting is so common that Python has a very powerful library
called regular expressions that handles many of these tasks quite elegantly. The reason
we have not introduced regular expressions earlier in the book is because while they are
very powerful, they are a little complicated and their syntax takes some getting used to.

Regular expressions are almost their own little programming language for searching and
parsing strings. As a matter of fact, entire books have been written on the topic of regular
expressions. In this chapter, we will only cover the basics of regular expressions. For
more detail on regular expressions, see:

http://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/2/library/re.html

The regular expression library re must be imported into your program before you can
use it. The simplest use of the regular expression library is the search () function. The
following program demonstrates a trivial use of the search function.

Search for lines that contain 'From'
import re
hand = open('mbox-short.txt')
for line in hand:
line = line.rstrip(Q)
if re.search('From:', line):
print(line)

Code: http://www.pyse.com/code3/rell.py

We open the file, loop through each line, and use the regular expression search() to
only print out lines that contain the string “From:” . This program does not use the real

119

http://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/2/library/re.html

120 CHAPTER 11. REGULAR EXPRESSIONS

power of regular expressions, since we could have just as easily used 1ine.find () to
accomplish the same result.

The power of the regular expressions comes when we add special characters to the search
string that allow us to more precisely control which lines match the string. Adding these
special characters to our regular expression allow us to do sophisticated matching and
extraction while writing very little code.

For example, the caret character is used in regular expressions to match “the beginning”
of a line. We could change our program to only match lines where “From:” was at the
beginning of the line as follows:

Search for lines that start with 'From'
import re
hand = open('mbox-short.txt"')
for line in hand:
line = line.rstrip()
if re.search('"From:', line):
print(line)

Code: http://www.pyde.com/code3/re02.py

Now we will only match lines that start with the string “From:” . This is still a very sim-
ple example that we could have done equivalently with the startswith () method from
the string library. But it serves to introduce the notion that regular expressions contain
special action characters that give us more control as to what will match the regular ex-
pression.

11.1 Character matching in regular expressions

There are a number of other special characters that let us build even more powerful reg-
ular expressions. The most commonly used special character is the period or full stop,
which matches any character.

In the following example, the regular expression “F..m:” would match any of the strings
“From:” , “Fxxm:” ; “F12m:” jor “Fl@m:” since the period charactersin the regular
expression match any character.

Search for lines that start with 'F', followed by
2 characters, followed by 'm:'
import re
hand = open('mbox-short.txt"')
for line in hand:

line = line.rstrip()

if re.search('"F..m:', line):

print(line)

Code: http://www.pyde.com/code3/red3.py

11.2. EXTRACTING DATA USING REGULAR EXPRESSIONS 121

This is particularly powerful when combined with the ability to indicate that a character
can be repeated any number of times using the “*” or “+” characters in your regular
expression. These special characters mean that instead of matching a single character
in the search string, they match zero-or-more characters (in the case of the asterisk) or

one-or-more of the characters (in the case of the plus sign).

We can further narrow down the lines that we match using a repeated wild card character
in the following example:

Search for lines that start with From and have an at sign
import re
hand = open('mbox-short.txt')
for line in hand:
line = line.rstrip()
if re.search(' "From:.+Q@', line):
print(line)

Code: http://www.pyde.com/code3/rel.py

The search string ““From:.+@” will successfully match lines that start with “From:” ,
followed by one or more characters (“.+”), followed by an at-sign. So this will match the
following line:

From:uct.ac.za

You can think of the “.+” wildcard as expanding to match all the characters between the
colon character and the at-sign.

From:

It is good to think of the plus and asterisk characters as “pushy” . For example, the

following string would match the last at-sign in the string as the “.+” pushes outwards,
as shown below:

From:iupui.edu

It is possible to tell an asterisk or plus sign notto be so “greedy” by adding another char-
acter. See the detailed documentation for information on turning off the greedy behavior.

11.2 Extracting data using regular expressions

If we want to extract data from a string in Python we can use the findall () method to
extract all of the substrings which match a regular expression. Let’ s use the example
of wanting to extract anything that looks like an email address from any line regardless
of format. For example, we want to pull the email addresses from each of the following
lines:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>
for <source@collab.sakaiproject.org>;
Received: (from apache@localhost)
Author: stephen.marquardQuct.ac.za

122 CHAPTER 11. REGULAR EXPRESSIONS

We don’ t want to write code for each of the types of lines, splitting and slicing differ-
ently for each line. This following program uses findall () to find the lines with email
addresses in them and extract one or more addresses from each of those lines.

import re

s = 'A message from csevQumich.edu to cwen@iupui.edu about meeting Q2PM'
1st = re.findall('\S+@\S+', s)
print(1lst)

Code: http://www.pyie.com/code3/re0d5.py

The findall () method searches the string in the second argument and returns a list of
all of the strings that look like email addresses. We are using a two-character sequence
that matches a non-whitespace character (\S).

The output of the program would be:

['csev@umich.edu', 'cwen@iupui.edu']

Translating the regular expression, we are looking for substrings that have at least one
non-whitespace character, followed by an at-sign, followed by at least one more non-
whitespace character. The “\S+” matches as many non-whitespace characters as possi-
ble.

The regular expression would match twice (csev@umich.edu and cwen@iupui.edu), but it
would not match the string “@2PM” because there are no non-blank characters before
the at-sign. We can use this regular expression in a program to read all the lines in a file
and print out anything that looks like an email address as follows:

Search for lines that have an at sign between characters
import re
hand = open('mbox-short.txt"')
for line in hand:

line = line.rstrip()

x = re.findall('\S+@\S+', line)

if len(x) > O:

print (x)

Code: http://www.pyse.com/code3/reld6.py

We read each line and then extract all the substrings that match our regular expression.
Since findall() returns a list, we simply check if the number of elements in our re-
turned list is more than zero to print only lines where we found at least one substring that
looks like an email address.

If we run the program on mbox . txt we get the following output:

['wagnermr@iupui.edu']

['cwen@iupui.edu']
['<postmaster@collab.sakaiproject.org>']
['<200801032122.m03LMF04005148@nakamura.uits.iupui.edu>']

11.2. EXTRACTING DATA USING REGULAR EXPRESSIONS 123

['<source@collab.sakaiproject.org>;‘]
['<source@collab.sakaiproject.org>;']
['<source@collab.sakaiproject.org>;']
['apache@localhost) ']
['source@collab.sakaiproject.org; ']

« 9 (7%

Some of our email addresses have incorrect characterslike “<” or “;” atthe beginning
or end. Let’ s declare that we are only interested in the portion of the string that starts
and ends with a letter or a number.

To do this, we use another feature of regular expressions. Square brackets are used to
indicate a set of multiple acceptable characters we are willing to consider matching. In
asense, the “\S” is asking to match the set of “non-whitespace characters” . Now we
will be a little more explicit in terms of the characters we will match.

Here is our new regular expression:
[a-zA-Z0-9]\S*@\S* [a-zA-Z]

This is getting a little complicated and you can begin to see why regular expressions are
their own little language unto themselves. Translating this regular expression, we are
looking for substrings that start with a single lowercase letter, uppercase letter, or number
“[a-zA-Z0-9]” , followed by zero or more non-blank characters (“\S*”), followed by an at-
sign, followed by zero or more non-blank characters (“\S*”), followed by an uppercase
or lowercase letter. Note that we switched from “+” to “*” toindicate zero or more non-
blank characters since “[a-zA-Z0-9]” 1is already one non-blank character. Remember
that the “*” or “+” applies to the single character immediately to the left of the plus

or asterisk.

If we use this expression in our program, our data is much cleaner:

Search for lines that have an at sign between characters
The characters must be a letter or number
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()

x = re.findall(' [a-zA-Z0-9]\S+@\S+[a-zA-Z]', line)

if len(x) > O:

print (x)

Code: http://www.pyle.com/code3/reld7.py

['wagnermr@iupui.edu']

['cwen@iupui.edu']
['postmaster@collab.sakaiproject.org']
['200801032122.m03LMF040051480@nakamura.uits. iupui.edu']
['source@collab.sakaiproject.org']
['source@collab.sakaiproject.org']
['source@collab.sakaiproject.org']

['apache@localhost']

124 CHAPTER 11. REGULAR EXPRESSIONS

Notice that on the “source@collab.sakaiproject.org” lines, our regular expression elim-
inated two letters at the end of the string (“>;”). This is because when we append “[a-
zA-Z]” to the end of our regular expression, we are demanding that whatever string the
regular expression parser finds must end with a letter. So when it sees the “>” after

“sakaiproject.org>;” it simply stops atthe last “matching” letter it found (i.e., the “g
was the last good match).

Also note that the output of the program is a Python list that has a string as the single
element in the list.

11.3 Combining searching and extracting

If we want to find numbers on lines that start with the string “X-” such as:

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

we don’ t just want any floating-point numbers from any lines. We only want to extract
numbers from lines that have the above syntax.

We can construct the following regular expression to select the lines:
“X-.x: [0-9.]1+

Translating this, we are saying, we want lines that start with “X-” | followed by zero or
more characters (“*”), followed by a colon (“:”) and then a space. After the space we
are looking for one or more characters that are either a digit (0-9) or a period “[0-9.]+” .
Note that inside the square brackets, the period matches an actual period (i.e., it is not a

wildcard between the square brackets).

This is a very tight expression that will pretty much match only the lines we are interested
in as follows:

Search for lines that start with 'X' followed by any non
whitespace characters and ':'
followed by a space and any number.
The number can include a decimal.
import re
hand = open('mbox-short.txt')
for line in hand:
line = line.rstrip()
if re.search(' "X\S*: [0-9.]+', line):
print(line)

Code: http://www.pyde.com/code3/rell.py

When we run the program, we see the data nicely filtered to show only the lines we are
looking for.

11.3. COMBINING SEARCHING AND EXTRACTING 125

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000
X-DSPAM-Confidence: 0.6178
X-DSPAM-Probability: 0.0000

But now we have to solve the problem of extracting the numbers. While it would be simple
enough to use split, we can use another feature of regular expressions to both search
and parse the line at the same time.

Parentheses are another special character in regular expressions. When you add paren-
theses to a regular expression, they are ignored when matching the string. But when you
are using findall (), parentheses indicate that while you want the whole expression to
match, you only are interested in extracting a portion of the substring that matches the
regular expression.

So we make the following change to our program:

Search for lines that start with 'X' followed by any
non whitespace characters and ':' followed by a space
and any number. The number can include a decimal.
Then print the number <f 4t is greater than zero.
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip(Q)

x = re.findall (' “X\S*: ([0-9.]+)', line)

if len(x) > O:

print (x)

Code: http://www.pyde.com/code3/rell.py

Instead of calling search (), we add parentheses around the part of the regular expres-
sion that represents the floating-point number to indicate we only want findall() to
give us back the floating-point number portion of the matching string.

The output from this program is as follows:

['0.8475']
['0.0000']
['0.6178"']
['0.0000']
['0.6961']
['0.0000']

The numbers are still in a list and need to be converted from strings to floating point, but
we have used the power of regular expressions to both search and extract the information
we found interesting.

As another example of this technique, if you look at the file there are a number of lines of
the form:

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

126 CHAPTER 11. REGULAR EXPRESSIONS

If we wanted to extract all of the revision numbers (the integer number at the end of these
lines) using the same technique as above, we could write the following program:

Search for lines that start with 'Details: rev='
followed by numbers and '.'
Then print the number 1f 4t is greater than zero
import re
hand = open('mbox-short.txt"')
for line in hand:

line = line.rstrip()

x = re.findall(' "Details: .*rev=([0-9.]+)', line)

if len(x) > O:

print (x)

Code: http://www.pyle.com/code3/rel2.py

Translating our regular expression, we are looking for lines that start with “Details:” |
followed by any number of characters (“*”), followed by “rev=" , and then by one or
more digits. We want to find lines that match the entire expression but we only want to
extract the integer number at the end of the line, so we surround “[0-9]+” with paren-
theses.

When we run the program, we get the following output:

['39772']
['39771']
['39770']
['39769']

Remember that the “[0-9]+” is “greedy” and it tries to make as large a string of digits
as possible before extracting those digits. This “greedy” behavior is why we get all five
digits for each number. The regular expression library expands in both directions until it
encounters a non-digit, or the beginning or the end of a line.

Now we can use regular expressions to redo an exercise from earlier in the book where
we were interested in the time of day of each mail message. We looked for lines of the
form:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

and wanted to extract the hour of the day for each line. Previously we did this with two
calls to split. First the line was split into words and then we pulled out the fifth word
and split it again on the colon character to pull out the two characters we were interested
in.

While this worked, it actually results in pretty brittle code that is assuming the lines are
nicely formatted. If you were to add enough error checking (or a big try/except block) to
insure that your program never failed when presented with incorrectly formatted lines,
the code would balloon to 10-15 lines of code that was pretty hard to read.

We can do this in a far simpler way with the following regular expression:

11.4. ESCAPE CHARACTER 127
“From .* [0-9][0-9]:

The translation of this regular expression is that we are looking for lines that start with
“From” (note the space), followed by any number of characters (“*”), followed by a
space, followed by two digits “[0-9][0-9]” , followed by a colon character. This is the
definition of the kinds of lines we are looking for.

In order to pull out only the hour using findall (), we add parentheses around the two
digits as follows:

“From .* ([0-9][0-9]):

This results in the following program:

Search for lines that start with From and a character
followed by a two digit number between 00 and 99 followed by ':'
Then print the number <f 4t is greater than zero
import re
hand = open('mbox-short.txt')
for line in hand:
line = line.rstrip(Q)
x = re.findall('"From .* ([0-9][0-9]):', line)
if len(x) > 0: print(x)

Code: http://www.pyse.com/code3/rel3.py

When the program runs, it produces the following output:

L B e B e B e |
=)
g1 o 0 O
—_

11.4 Escape character

Since we use special characters in regular expressions to match the beginning or end of a
line or specify wild cards, we need a way to indicate that these characters are “normal”
and we want to match the actual character such as a dollar sign or caret.

We can indicate that we want to simply match a character by prefixing that character
with a backslash. For example, we can find money amounts with the following regular
expression.

import re
X = 'We just received $10.00 for cookies.'
y = re.findall('\$[0-9.]+"',x)

128 CHAPTER 11. REGULAR EXPRESSIONS

Since we prefix the dollar sign with a backslash, it actually matches the dollar sign in the
input string instead of matching the “end of line” , and the rest of the regular expres-
sion matches one or more digits or the period character. Note: Inside square brackets,
characters are not “special” . So when we say “[0-9.]” , it really means digits or a pe-
riod. Outside of square brackets, a period is the “wild-card” character and matches any
character. Inside square brackets, the period is a period.

11.5 Summary

While this only scratched the surface of regular expressions, we have learned a bit about
the language of regular expressions. They are search strings with special characters in
them that communicate your wishes to the regular expression system as to what defines
“matching” and what is extracted from the matched strings. Here are some of those
special characters and character sequences:

~ Matches the beginning of the line.

$ Matches the end of the line.

. Matches any character (a wildcard).

\s Matches a whitespace character.

\S Matches a non-whitespace character (opposite of \s).

* Applies to the immediately preceding character and indicates to match zero or more of
the preceding character(s).

*7 Applies to the immediately preceding character and indicates to match zero or more
of the preceding character(s) in “non-greedy mode” .

+ Applies to the immediately preceding character and indicates to match one or more of
the preceding character(s).

+7 Applies to the immediately preceding character and indicates to match one or more
of the preceding character(s) in “non-greedy mode” .

[aeiou] Matches a single character as long as that character is in the specified set. In this

7] @ 9 “@e « 2 [73]

example, it would match “a” , “e” , “i", “0” ,or “u” , butno other characters.

[a-z0-9] You can specify ranges of characters using the minus sign. This example is a single
character that must be a lowercase letter or a digit.

[TA-Za-z] When the first character in the set notation is a caret, it inverts the logic. This
example matches a single character that is anything other than an uppercase or lowercase
letter.

() When parentheses are added to a regular expression, they are ignored for the purpose
of matching, but allow you to extract a particular subset of the matched string rather than
the whole string when using findall().

\b Matches the empty string, but only at the start or end of a word.
\B Matches the empty string, but not at the start or end of a word.
\d Matches any decimal digit; equivalent to the set [0-9].

\D Matches any non-digit character; equivalent to the set [~0-9].

11.6. BONUS SECTION FOR UNIX / LINUX USERS 129
11.6 Bonus section for Unix / Linux users

Support for searching files using regular expressions was built into the Unix operating
system since the 1960s and it is available in nearly all programming languages in one
form or another.

As a matter of fact, there is a command-line program built into Unix called grep (General-
ized Regular Expression Parser) that does pretty much the same as the search() exam-
plesin this chapter. So if you have a Macintosh or Linux system, you can try the following
commands in your command-line window.

$ grep '"From:' mbox-short.txt
From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zqian@umich.edu

From: rjlowe@iupui.edu

This tells grep to show you lines that start with the string “From:” in the file mbox—
short.txt. If you experiment with the grep command a bit and read the documentation
for grep, you will find some subtle differences between the regular expression support
in Python and the regular expression support in grep. As an example, grep does not
support the non-blank character “\S” so you will need to use the slightly more complex
set notation “[~]” , which simply means match a character that is anything other than
a space.

11.7 Debugging

Python has some simple and rudimentary built-in documentation that can be quite help-
ful if you need a quick refresher to trigger your memory about the exact name of a partic-
ular method. This documentation can be viewed in the Python interpreter in interactive
mode.

You can bring up an interactive help system using help().

>>> help()

help> modules

If you know what module you want to use, you can use the dir () command to find the
methods in the module as follows:

>>> import re

>>> dir(re)

[.. 'compile', 'copy_reg', 'error', 'escape', 'findall',
'finditer', 'match', 'purge', 'search', 'split', 'sre_compile',
'sre_parse', 'sub', 'subn', 'sys', "template']

You can also get a small amount of documentation on a particular method using the dir
command.

130 CHAPTER 11. REGULAR EXPRESSIONS

>>> help (re.search)
Help on function search in module re:

search(pattern, string, flags=0)
Scan through string looking for a match to the pattern, returning
a match object, or None if no match was found.

>>>

The built-in documentation is not very extensive, but it can be helpful when you are in a
hurry or don’ t have access to a web browser or search engine.

11.8 Glossary

brittle code Code that works when the input data is in a particular format but is prone to
breakage if there is some deviation from the correct format. We call this “brittle
code” because it is easily broken.

greedy matching The notion that the “+” and characters in a regular expression
expand outward to match the largest possible string.

grep A command available in most Unix systems that searches through text files looking
for lines that match regular expressions. The command name stands for “Gener-
alized Regular Expression Parser” .

regular expression A language for expressing more complex search strings. A regular
expression may contain special characters that indicate that a search only matches
at the beginning or end of a line or many other similar capabilities.

wild card A special character that matches any character. In regular expressions the
wild-card character is the period.

Coxed

11.9 Exercises

Exercise 1: Write a simple program to simulate the operation of the grep command
on Unix. Ask the user to enter a regular expression and count the number of lines that
matched the regular expression:

$ python grep.py
Enter a regular expression: ~Author
mbox.txt had 1798 lines that matched ~Author

$ python grep.py
Enter a regular expression: “X-
mbox.txt had 14368 lines that matched ~“X-

$ python grep.py
Enter a regular expression: java$
mbox.txt had 4218 lines that matched java$

Exercise 2: Write a program to look for lines of the form

“New Revision: 39772°

11.9. EXERCISES 131

and extract the number from each of the lines using a regular expression and the
findall () method. Compute the average of the numbers and print out the average.

Enter file:mbox.txt
38549.7949721

Enter file:mbox-short.txt
39756.9259259

132 CHAPTER 11. REGULAR EXPRESSIONS

Chapter 12

Networked programs

While many of the examples in this book have focused on reading files and looking for
data in those files, there are many different sources of

information when one considers the Internet.

In this chapter we will pretend to be a web browser and retrieve web pages using the
HyperText Transport Protocol (HTTP). Then we will read through the web page data and
parse it.

12.1 HyperText Transport Protocol - HTTP

The network protocol that powers the web is actually quite simple and there is built-in
support in Python called sockets which makes it very easy to make network connections
and retrieve data over those sockets in a Python program.

A socket is much like a file, except that a single socket provides a two-way connection
between two programs. You can both read from and write to the same socket. If you
write something to a socket, it is sent to the application at the other end of the socket. If
you read from the socket, you are given the data which the other application has sent.

But if you try to read a socket when the program on the other end of the socket has not
sent any data, you just sit and wait. If the programs on both ends of the socket simply wait
for some data without sending anything, they will wait for a very long time.

So an important part of programs that communicate over the Internet is to have some
sort of protocol. A protocol is a set of precise rules that determine who is to go first, what
they are to do, and then what the responses are to that message, and who sends next, and
so on. In a sense the two applications at either end of the socket are doing a dance and
making sure not to step on each other’ s toes.

There are many documents which describe these network protocols. The HyperText
Transport Protocol is described in the following document:

http://www.w3.org/Protocols/rfc2616/rfc2616.txt
Thisis along and complex 176-page document with a lot of detail. If you find it interesting,

feel free to read it all. But if you take a look around page 36 of RFC2616 you will find

133

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

134 CHAPTER 12. NETWORKED PROGRAMS

the syntax for the GET request. To request a document from a web server, we make a
connection to the www . prée. org server on port 80, and then send a line of the form

GET http://data.pr4e.org/romeo.txt HTTP/1.0

where the second parameter is the web page we are requesting, and then we also send a
blank line. The web server will respond with some header information about the docu-
ment and a blank line followed by the document content.

12.2 The World’ s Simplest Web Browser

Perhaps the easiest way to show how the HTTP protocol works is to write a very simple
Python program that makes a connection to a web server and follows the rules of the
HTTP protocol to requests a document and display what the server sends back.

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
mysock.connect (('data.prde.org', 80))

cmd = 'GET http://data.préde.org/romeo.txt HTTP/1.0\r\n\r\n'.encode()
mysock.send (cmd)

while True:
data = mysock.recv(512)
if (len(data) < 1):
break
print(data.decode())
mysock.close()

Code: http://www.pyle.com/code3/socketl.py

First the program makes a connection to port 80 on the server www.py4e.com. Since our
program is playing the role of the “web browser” , the HTTP protocol says we must send
the GET command followed by a blank line.

Once we send that blank line, we write a loop that receives data in 512-character chunks
from the socket and prints the data out until there is no more data to read (i.e., the recv()
returns an empty string).

The program produces the following output:

HTTP/1.1 200 OK

Date: Sun, 14 Mar 2010 23:52:41 GMT

Server: Apache

Last-Modified: Tue, 29 Dec 2009 01:31:22 GMT
ETag: "143c1b33-a7-4b395bea"

Accept-Ranges: bytes

Content-Length: 167

Connection: close

Content-Type: text/plain

http://www.py4e.com

12.3. RETRIEVING AN IMAGE OVER HTTP 135

Your
Program

www.py4e.com

socket

connect Web Pages

Figure 12.1: A Socket Connection

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

The output starts with headers which the web server sends to describe the document. For
example, the Content-Type header indicates that the document is a plain text document
(text/plain).

After the server sends us the headers, it adds a blank line to indicate the end of the headers,
and then sends the actual data of the file romeo . txt.

This example shows how to make a low-level network connection with sockets. Sockets
can be used to communicate with a web server or with a mail server or many other kinds
of servers. All that is needed is to find the document which describes the protocol and
write the code to send and receive the data according to the protocol.

However, since the protocol that we use most commonly is the HTTP web protocol,
Python has a special library specifically designed to support the HTTP protocol for the
retrieval of documents and data over the web.

12.3 Retrieving an image over HTTP

In the above example, we retrieved a plain text file which had newlines in the file and we
simply copied the data to the screen as the program ran. We can use a similar program
to retrieve an image across using HTTP. Instead of copying the data to the screen as the
program runs, we accumulate the data in a string, trim off the headers, and then save the
image data to a file as follows:

import socket
import time

HOST 'data.prée.org'’
PORT = 80
mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

136 CHAPTER 12. NETWORKED PROGRAMS

mysock.connect ((HOST, PORT))

mysock.sendall(b'GET http://data.prde.org/cover3. jpg HTTP/1.0\r\n\r\n')
count = 0

picture = b""

while True:
data = mysock.recv(5120)
if (len(data) < 1): break
time.sleep(0.25)
count = count + len(data)
print(len(data), count)
picture = picture + data

mysock.close()

Look for the end of the header (2 CRLF)
pos = picture.find(b"\r\n\r\n")
print('Header length', pos)
print(picture[:pos].decode())

Skip past the header and save the picture data
picture = picture[pos+4:]

fhand = open("stuff.jpg", "wb")
fhand.write(picture)

fhand.close()

Code: http://www.pyle.com/code3/urljpeg.py
When the program runs it produces the following output:

$ python urljpeg.py

2920 2920

1460 4380

1460 5840

1460 7300

1460 62780

1460 64240

2920 67160

1460 68620

1681 70301

Header length 240

HTTP/1.1 200 OK

Date: Sat, 02 Nov 2013 02:15:07 GMT
Server: Apache

Last-Modified: Sat, 02 Nov 2013 02:01:26 GMT
ETag: "19c141-111a9-4ea280£8354b8"
Accept-Ranges: bytes
Content-Length: 70057

Connection: close

Content-Type: image/jpeg

12.4. RETRIEVING WEB PAGES WITH URLLIB 137

You can see that for this url, the Content-Type header indicates that body of the docu-
ment is an image (image/jpeg). Once the program completes, you can view the image
data by opening the file stuff . jpg in an image viewer.

As the program runs, you can see that we don’ t get 5120 characters each time we call the
recv () method. We get as many characters as have been transferred across the network
to us by the web server at the moment we call recv (). In this example, we either get 1460
or 2920 characters each time we request up to 5120 characters of data.

Your results may be different depending on your network speed. Also note that on the
last call to recv () we get 1681 bytes, which is the end of the stream, and in the next call
to recv () we get a zero-length string that tells us that the server has called close () on
its end of the socket and there is no more data forthcoming.

We can slow down our successive recv () calls by uncommenting the callto time.sleep().
This way, we wait a quarter of a second after each call so that the server can “get ahead”

of us and send more data to us before we call recv () again. With the delay, in place the
program executes as follows:

$ python urljpeg.py

1460 1460

5120 6580

5120 11700

5120 62900

5120 68020

2281 70301

Header length 240

HTTP/1.1 200 OK

Date: Sat, 02 Nov 2013 02:22:04 GMT
Server: Apache

Last-Modified: Sat, 02 Nov 2013 02:01:26 GMT
ETag: "19c141-111a9-4ea280£8354b8"
Accept-Ranges: bytes
Content-Length: 70057

Connection: close

Content-Type: image/jpeg

Now other than the first and last calls to recv (), we now get 5120 characters each time
we ask for new data.

There is a buffer between the server making send () requests and our application making
recv() requests. When we run the program with the delay in place, at some point the
server might fill up the buffer in the socket and be forced to pause until our program
starts to empty the buffer. The pausing of either the sending application or the receiving
application is called “flow control” .

12.4 Retrieving web pages with urllib

While we can manually send and receive data over HTTP using the socket library, there is
a much simpler way to perform this common task in Python by using the ur11ib library.

138 CHAPTER 12. NETWORKED PROGRAMS

Using urllib, you can treat a web page much like a file. You simply indicate which web
page you would like to retrieve and urllib handles all of the HTTP protocol and header
details.

The equivalent code to read the romeo . txt file from the web using ur11ib is as follows:

import urllib.request

fhand = urllib.request.urlopen('http://data.prde.org/romeo.txt"')
for line in fhand:
print(line.decode() .strip())

Code: http://www.pyde.com/code3/urllibl.py

Once the web page has been opened with urllib.urlopen, we can treat it like a file and
read through it using a for loop.

When the program runs, we only see the output of the contents of the file. The headers
are still sent, but the ur11ib code consumes the headers and only returns the data to us.

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

As an example, we can write a program to retrieve the data for romeo. txt and compute
the frequency of each word in the file as follows:

import urllib.request, urllib.parse, urllib.error
fhand = urllib.request.urlopen('http://data.prde.org/romeo.txt")

counts = dict()
for line in fhand:
words = line.decode() .split()
for word in words:
counts [word] = counts.get(word, 0) + 1
print (counts)

Code: http://www.pyle.com/code3/urlwords.py

Again, once we have opened the web page, we can read it like a local file.

12.5 Parsing HTML and scraping the web

One of the common uses of the urllib capability in Python is to scrape the web. Web
scraping is when we write a program that pretends to be a web browser and retrieves
pages, then examines the data in those pages looking for patterns.

12.6. PARSING HTML USING REGULAR EXPRESSIONS 139

As an example, a search engine such as Google will look at the source of one web page
and extract the links to other pages and retrieve those pages, extracting links, and so on.
Using this technique, Google spiders its way through nearly all of the pages on the web.

Google also uses the frequency of links from pages it finds to a particular page as one
measure of how “important” apageisand how high the page should appear in its search
results.

12.6 Parsing HTML using regular expressions

One simple way to parse HTML is to use regular expressions to repeatedly search for and
extract substrings that match a particular pattern.

Here is a simple web page:

<h1>The First Page</h1>

<p>

If you like, you can switch to the

Second Page.

</p>

We can construct a well-formed regular expression to match and extract the link values
from the above text as follows:

href="http://.+7"

Our regular expression looks for strings that start with “href=" http:// “, followed by one
ormore characters (” .+; °), followed by another double quote. The question mark added
to the” .+?” indicates that the match is to be done in a “non-greedy” fashion instead
ofa “greedy” fashion. A non-greedy match tries to find the smallest possible matching
string and a greedy match tries to find the largest possible matching string.

We add parentheses to our regular expression to indicate which part of our matched string
we would like to extract, and produce the following program:

Search for lines that start with From and have an at sign
import urllib.request, urllib.parse, urllib.error
import re

url = input('Enter - ')
html = urllib.request.urlopen(url).read()
links = re.findall(b'href="(http://.*7)""', html)
for link in links:
print(link.decode())

Code: http://www.pyie.com/code3/urlregez.py

The findall regular expression method will give us a list of all of the strings that match
our regular expression, returning only the link text between the double quotes.

When we run the program, we get the following output:

140 CHAPTER 12. NETWORKED PROGRAMS

python urlregex.py
Enter - http://www.dr-chuck.com/pagel.htm
http://wuw.dr-chuck.com/page2.htm

python urlregex.py

Enter - http://www.py4e.com/book.htm
http://wuw.greenteapress.com/thinkpython/thinkpython.html
http://allendowney.com/

http://www.py4e.com/code
http://wuw.lib.umich.edu/espresso-book-machine
http://wuw.py4e.com/py4inf-slides.zip

Regular expressions work very nicely when your HTML is well formatted and predictable.
Butsincetherearealotof “broken” HTML pages out there, a solution only using regular
expressions might either miss some valid links or end up with bad data.

This can be solved by using a robust HTML parsing library.

12.7 Parsing HTML using BeautifulSoup

There are a number of Python libraries which can help you parse HTML and extract data
from the pages. Each of the libraries has its strengths and weaknesses and you can pick
one based on your needs.

As an example, we will simply parse some HTML input and extract links using the Beau-
tifulSoup library. You can download and install the BeautifulSoup code from:

http://www.crummy.com/software/

You candownload and “install” BeautifulSoup or you can simply place the BeautifulSoup.py
file in the same folder as your application.

Even though HTML looks like XML'i and some pages are carefully constructed to be XML,
most HTML is generally broken in ways that cause an XML parser to reject the entire page
of HTML as improperly formed. BeautifulSoup tolerates highly flawed HTML and still lets
you easily extract the data you need.

We will use urllib to read the page and then use BeautifulSoup to extract the href
attributes from the anchor (a) tags.

To run thts, you can install BeautifulSoup
https://pypi.python.org/pypi/beautifulsoups

Or download the file
http://www.pyde.com/code3/bss.zip
and unzip it in the same directory as this file

import urllib.request, urllib.parse, urllib.error
from bs4 import BeautifulSoup
import ssl

!The XML format is described in the next chapter.

http://www.crummy.com/software/

12.7. PARSING HTML USING BEAUTIFULSOUP 141

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urllib.request.urlopen(url, context=ctx).read()
soup = BeautifulSoup(html, 'html.parser')

Retrieve all of the anchor tags

tags = soup('a')

for tag in tags:
print(tag.get('href', None))

Code: http://www.pylde.com/code3/urllinks.py

The program prompts for a web address, then opens the web page, reads the data and
passes the data to the BeautifulSoup parser, and then retrieves all of the anchor tags and
prints out the href attribute for each tag.

When the program runs it looks as follows:

python urllinks.py
Enter - http://www.dr-chuck.com/pagel.htm
http://www.dr-chuck. com/page2.htm

python urllinks.py

Enter - http://www.py4e.com/book.htm
http://www.greenteapress.com/thinkpython/thinkpython.html
http://allendowney.com/

http://www.si502.com/
http://www.lib.umich.edu/espresso-book-machine
http://www.py4e.com/code

http://www.pyde.com/

You can use BeautifulSoup to pull out various parts of each tag as follows:

To run this, you can install BeauttfulSoup
https://pypi.python.org/pypi/beautifulsoups

Or download the file
http://www.pyde.com/code3/bss.zip
and unzip it in the same directory as this file

from urllib.request import urlopen
from bs4 import BeautifulSoup
import ssl

Ignore SSL certificate errors
ctx = ssl.create_default_context()

142 CHAPTER 12. NETWORKED PROGRAMS

ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urlopen(url, context=ctx).read()

html.parser ts the HIML parser included in the standard Python 3 library.
information on other HIML parsers s here:

htip://www.crummy. com/software/BeautifulSoup/bs4/doc/#installing-a-parser
soup = BeautifulSoup(html, "html.parser")

Retrieve all of the anchor tags

tags = soup('a')

for tag in tags:
Look at the parts of a tag
print ('TAG: ', tag)
print('URL: ', tag.get('href', None))
print('Contents:', tag.contents[0])
print('Attrs:', tag.attrs)

Code: http://www.pyle.com/code3/urllink2. py

python urllink2.py

Enter - http://www.dr-chuck.com/pagel.htm

TAG:
Second Page

URL: http://www.dr-chuck.com/page2.htm

Content: ['\nSecond Page']

Attrs: [('href', 'http://www.dr-chuck.com/page2.htm')]

These examples only begin to show the power of BeautifulSoup when it comes to parsing
HTML.

12.8 Reading binary files using urllib

Sometimes you want to retrieve a non-text (or binary) file such as an image or video file.
The data in these files is generally not useful to print out, but you can easily make a copy
of a URL to a local file on your hard disk using ur1lib.

The pattern is to open the URL and use read to download the entire contents of the doc-
ument into a string variable (img) then write that information to a local file as follows:

import urllib.request, urllib.parse, urllib.error

img = urllib.request.urlopen('http://data.prde.org/cover3. jpg') .read()
fhand = open('cover3.jpg', 'wb')

fhand.write (img)

fhand.close()

Code: http://www.pyde.com/code3/curll.py

12.9. GLOSSARY 143

This program reads all of the data in at once across the network and stores it in the variable
img in the main memory of your computer, then opens the file cover. jpg and writes the
data out to your disk. This will work if the size of the file is less than the size of the memory
of your computer.

However if this is a large audio or video file, this program may crash or at least run ex-
tremely slowly when your computer runs out of memory. In order to avoid running out
of memory, we retrieve the data in blocks (or buffers) and then write each block to your
disk before retrieving the next block. This way the program can read any size file without
using up all of the memory you have in your computer.

import urllib.request, urllib.parse, urllib.error

img = urllib.request.urlopen('http://data.préde.org/cover3.jpg')
fhand = open('cover3.jpg', 'wb')
size = 0
while True:
info = img.read(100000)
if len(info) < 1: break
size = size + len(info)
fhand.write(info)

print(size, 'characters copied.')
fhand.close()

Code: http://www.pyde.com/code3/curl2. py

In this example, we read only 100,000 characters at a time and then write those characters
to the cover. jpg file before retrieving the next 100,000 characters of data from the web.
This program runs as follows:

python curl2.py
568248 characters copied.

If you have a Unix or Macintosh computer, you probably have a command built in to your
operating system that performs this operation as follows:

curl -0 http://www.pyde.com/cover. jpg

The command curl is short for “copy URL” and so these two examples are cleverly
named curll.py and curl2.py on www.py4e.com/code3 as they implement similar
functionality to the curl command. There is also a curl3.py sample program that does
this task a little more effectively, in case you actually want to use this pattern in a program
you are writing.

12.9 Glossary

BeautifulSoup A Python library for parsing HTML documents and extracting data from
HTML documents that compensates for most of the imperfections in the HTML

http://www.py4e.com/code3

144 CHAPTER 12. NETWORKED PROGRAMS

that browsers generally ignore. You can download the BeautifulSoup code from
WWW.CTUMmYy.Com.

port A number that generally indicates which application you are contacting when you
make a socket connection to a server. As an example, web traffic usually uses port
80 while email traffic uses port 25.

scrape When a program pretends to be a web browser and retrieves a web page, then
looks at the web page content. Often programs are following the links in one page
to find the next page so they can traverse a network of pages or a social network.

socket A network connection between two applications where the applications can send
and receive data in either direction.

spider The act of a web search engine retrieving a page and then all the pages linked
from a page and so on until they have nearly all of the pages on the Internet which
they use to build their search index.

12.10 Exercises

Exercise 1: Change the socket program socket1l.py to prompt the user for the URL so
it can read any web page. You can use split('/"') to break the URL into its component
parts so you can extract the host name for the socket connect call. Add error checking
using try and except to handle the condition where the user enters an improperly for-
matted or non-existent URL.

Exercise 2: Change your socket program so that it counts the number of characters it has
received and stops displaying any text after it has shown 3000 characters. The program
should retrieve the entire document and count the total number of characters and display
the count of the number of characters at the end of the document.

Exercise 3: Use urllib to replicate the previous exercise of (1) retrieving the document
from a URL, (2) displaying up to 3000 characters, and (3) counting the overall number
of characters in the document. Don’ t worry about the headers for this exercise, simply
show the first 3000 characters of the document contents.

Exercise 4: Change the urllinks.py program to extract and count paragraph (p) tags
from the retrieved HTML document and display the count of the paragraphs as the output
of your program. Do not display the paragraph text, only count them. Test your program
on several small web pages as well as some larger web pages.

Exercise 5: (Advanced) Change the socket program so that it only shows data after the
headers and a blank line have been received. Remember that recv is receiving characters
(newlines and all), not lines.

http://www.crummy.com

Chapter 13

Using Web Services

Once it became easy to retrieve documents and parse documents over HTTP using pro-
grams, it did not take long to develop an approach where we

started producing documents that were specifically designed to be consumed by other
programs (i.e., not HTML to be displayed in a browser).

There are two common formats that we use when exchanging data across the web. The
“eXtensible Markup Language” or XML has been in use for a very long time and is best
suited for exchanging document-style data. When programs just want to exchange dic-
tionaries, lists, or other internal information with each other, they use JavaScript Object
Notation or JSON (see www.json.org). We will look at both formats.

13.1 eXtensible Markup Language - XML

XML looks very similar to HTML, but XML is more structured than HTML. Here is a sam-
ple of an XML document:

<person>
<name>Chuck</name>
<phone type="intl">
+1 734 303 4456
</phone>
<email hide="yes"/>
</person>

Often it is helpful to think of an XML document as a tree structure where there is a top
tag person and other tags such as phone are drawn as children of their parent nodes.

13.2 Parsing XML

Here is a simple application that parses some XML and extracts some data elements from
the XML:

145

http://www.json.org

146 CHAPTER 13. USING WEB SERVICES

type

+1 734
303 4456

Figure 13.1: A Tree Representation of XML

=intl

=yes

import xml.etree.ElementTree as ET

data = '''
<person>
<name>Chuck</name>
<phone type="intl">
+1 734 303 4456
</phone>
<email hide="yes"/>
</person>"'""'

tree = ET.fromstring(data)
print('Name:', tree.find('name').text)
print('Attr:', tree.find('email').get('hide'))

Code: http://www.pyse.com/code3/zmll.py

Calling fromstring converts the string representation of the XML intoa “tree” of XML
nodes. When the XML is in a tree, we have a series of methods we can call to extract
portions of data from the XML.

The find function searches through the XML tree and retrieves a node that matches
the specified tag. Each node can have some text, some attributes (like hide), and some
“child” nodes. Each node can be the top of a tree of nodes.

Name: Chuck
Attr: yes

Using an XML parser such as ElementTree has the advantage that while the XML in this
example is quite simple, it turns out there are many rules regarding valid XML and using
ElementTree allows us to extract data from XML without worrying about the rules of
XML syntax.

13.3. LOOPING THROUGH NODES 147
13.3 Looping through nodes

Often the XML has multiple nodes and we need to write a loop to process all of the nodes.
In the following program, we loop through all of the user nodes:

import xml.etree.ElementTree as ET

input = '"'
<stuff>
<users>
<user x="2">
<id>001</id>
<name>Chuck</name>
</user>
<user x="T7">
<id>009</id>
<name>Brent</name>
</user>
</users>
</stuff>'""

stuff = ET.fromstring(input)
1st = stuff.findall('users/user')
print('User count:', len(lst))

for item in 1st:
print('Name', item.find('name').text)
print('Id', item.find('id').text)
print('Attribute', item.get("x"))

Code: http://www.pyie.com/code3/Tml2.py

The findall method retrieves a Python list of subtrees that represent the user structures
in the XML tree. Then we can write a for loop that looks at each of the user nodes, and
prints the name and id text elements as well as the x attribute from the user node.

User count: 2
Name Chuck

Id 001
Attribute 2
Name Brent

Id 009
Attribute 7

13.4 JavaScript Object Notation - JSON

The JSON format was inspired by the object and array format used in the JavaScript lan-
guage. But since Python was invented before JavaScript, Python’ s syntax for dictionar-
ies and lists influenced the syntax of JSON. So the format of JSON is nearly identical to a
combination of Python lists and dictionaries.

148 CHAPTER 13. USING WEB SERVICES

Here is a JSON encoding that is roughly equivalent to the simple XML from above:

{
"name" : "Chuck",
"phone" : {
"type" : "intl",
"number" : "+1 734 303 4456"
1,
"email" : {
"hide" : "yes"
¥
}

You will notice some differences. First, in XML, we can add attributes like “intl” to the
“phone” tag. In JSON, we simply have key-value pairs. Also the XML “person” tag is
gone, replaced by a set of outer curly braces.

In general, JSON structures are simpler than XML because JSON has fewer capabilities
than XML. But JSON has the advantage that it maps directly to some combination of dictio-
naries and lists. And since nearly all programming languages have something equivalent
to Python’ s dictionaries and lists, JSON is a very natural format to have two cooperating
programs exchange data.

JSON is quickly becoming the format of choice for nearly all data exchange between ap-
plications because of its relative simplicity compared to XML.

13.5 Parsing JSON

We construct our JSON by nesting dictionaries (objects) and lists as needed. In this exam-
ple, we represent a list of users where each user is a set of key-value pairs (i.e., a dictio-
nary). So we have a list of dictionaries.

In the following program, we use the built-in json library to parse the JSON and read
through the data. Compare this closely to the equivalent XML data and code above. The
JSON has less detail, so we must know in advance that we are getting a list and that the
list is of users and each user is a set of key-value pairs. The JSON is more succinct (an
advantage) but also is less self-describing (a disadvantage).

import json

data = '''
[

{ "id" : "001",
"yt m2n)
"name" : "Chuck"

1,

{ "i4" : "009",
"o,
"name" : "Chuck"

13.6. APPLICATION PROGRAMMING INTERFACES 149

]lll

info = json.loads(data)
print('User count:', len(info))

for item in info:
print('Name', item['name'])
print('Id', item['id'])
print('Attribute', item['x'])

Code: http://www.pyie.com/code3/json2.py

If you compare the code to extract data from the parsed JSON and XML you will see that
what we get from json.loads() is a Python list which we traverse with a for loop, and each
item within that list is a Python dictionary. Once the JSON has been parsed, we can use
the Python index operator to extract the various bits of data for each user. We don’ thave
to use the JSON library to dig through the parsed JSON, since the returned data is simply
native Python structures.

The output of this program is exactly the same as the XML version above.

User count: 2
Name Chuck

Id 001
Attribute 2
Name Brent

Id 009
Attribute 7

In general, there is an industry trend away from XML and towards JSON for web services.
Because the JSON is simpler and more directly maps to native data structures we already
have in programming languages, the parsing and data extraction code is usually simpler
and more direct when using JSON. But XML is more self-descriptive than JSON and so
there are some applications where XML retains an advantage. For example, most word
processors store documents internally using XML rather than JSON.

13.6 Application Programming Interfaces

We now have the ability to exchange data between applications using HyperText Trans-
port Protocol (HTTP) and a way to represent complex data that we are sending back and
forth between these applications using eXtensible Markup Language (XML) or JavaScript
Object Notation (JSON).

The next step is to begin to define and document “contracts” between applications us-
ing these techniques. The general name for these application-to-application contracts is
Application Program Interfaces or APIs. When we use an API, generally one program
makes a set of services available for use by other applications and publishes the APIs (i.e.,
the “rules”) that must be followed to access the services provided by the program.

When we begin to build our programs where the functionality of our program includes
access to services provided by other programs, we call the approach a Service-Oriented

150 CHAPTER 13. USING WEB SERVICES

Hotel
Reservation
Service

Travel
Application

Figure 13.2: Service Oriented Architecture

Architecture or SOA. A SOA approach is one where our overall application makes use of
the services of other applications. A non-SOA approach is where the application is a single
standalone application which contains all of the code necessary to implement the appli-
cation.

We see many examples of SOA when we use the web. We can go to a single web site and
book air travel, hotels, and automobiles all from a single site. The data for hotels is not
stored on the airline computers. Instead, the airline computers contact the services on
the hotel computers and retrieve the hotel data and present it to the user. When the user
agrees to make a hotel reservation using the airline site, the airline site uses another web
service on the hotel systems to actually make the reservation. And when it comes time to
charge your credit card for the whole transaction, still other computers become involved
in the process.

A Service-Oriented Architecture has many advantages including: (1) we always maintain
only one copy of data (this is particularly important for things like hotel reservations
where we do not want to over-commit) and (2) the owners of the data can set the rules
about the use of their data. With these advantages, an SOA system must be carefully de-
signed to have good performance and meet the user’ s needs.

When an application makes a set of services in its API available over the web, we call these
web services.

13.7 Google geocoding web service

Google has an excellent web service that allows us to make use of their large database of
geographic information. We can submit a geographical search string like “Ann Arbor,
MI” to their geocoding API and have Google return its best guess as to where on a map
we might find our search string and tell us about the landmarks nearby.

13.7. GOOGLE GEOCODING WEB SERVICE 151

The geocoding service is free but rate limited so you cannot make unlimited use of the
API in a commercial application. But if you have some survey data where an end user has
entered a location in a free-format input box, you can use this API to clean up your data
quite nicely.

When you are using a free API like Google’ s geocoding API, you need to be respectful in
your use of these resources. If too many people abuse the service, Google might drop or
significantly curtail its free service.

You can read the online documentation for this service, but it is quite simple and you can
even test it using a browser by typing the following URL into your browser:

http://maps.googleapis.com/maps/api/geocode/json?address=Ann+Arbor%2C+MI

Make sure to unwrap the URL and remove any spaces from the URL before pasting it into
your browser.

The following is a simple application to prompt the user for a search string, call the Google
geocoding API, and extract information from the returned JSON.

import urllib.request, urllib.parse, urllib.error
import json

Note that Google s increasingly requiring keys
for this API
serviceurl = 'http://maps.googleapis.com/maps/api/geocode/json?’

while True:
address = input('Enter location: ')
if len(address) < 1: break

url = serviceurl + urllib.parse.urlencode(
{'address': address})

print ('Retrieving', url)

uh = urllib.request.urlopen(url)

data = uh.read().decode()
print('Retrieved', len(data), 'characters')

try:
js
except:
js = None

json.loads(data)

if not js or 'status' mnot in js or js['status'] != '0K':
print('==== Failure To Retrieve ===='
print(data)
continue

print(json.dumps(js, indent=4))

lat = js["results"][0] ["geometry"]["location"] ["lat"]
Ing = js["results"][0] ["geometry"]["location"] ["1ng"]

http://maps.googleapis.com/maps/api/geocode/json?address=Ann+Arbor%2C+MI

152 CHAPTER 13. USING WEB SERVICES

print('lat', lat, 'lng', 1lng)
location = js['results'][0] ['formatted_address']
print(location)

Code: http://www.pyle.com/code3/geojson.py

The program takes the search string and constructs a URL with the search string as a prop-
erly encoded parameter and then uses urllib to retrieve the text from the Google geocod-
ing API. Unlike a fixed web page, the data we get depends on the parameters we send and
the geographical data stored in Google’ s servers.

Once we retrieve the JSON data, we parse it with the json library and do a few checks to
make sure that we received good data, then extract the information that we are looking
for.

The output of the program is as follows (some of the returned JSON has been removed):

$ python geojson.py

Enter location: Ann Arbor, MI

Retrieving http://maps.googleapis.com/maps/api/
geocode/json?sensor=false&address=Ann+Arbor’2C+MI

Retrieved 1669 characters

{
"status": "OK",
"results": [
{

"geometry": {
"location_type": "APPROXIMATE",
"location": {
"lat": 42.2808256,
"Ing": -83.7430378

by
1,
"address_components": [
{
"long_name": "Ann Arbor",
"types": [
"locality",
"political"
1,
"short_name": "Ann Arbor"
X
1,
"formatted_address": "Ann Arbor, MI, USA",
"types": [
"locality",
"political"
]

13.8. SECURITY AND API USAGE 153

}
lat 42.2808256 1lng -83.7430378
Ann Arbor, MI, USA

Enter location:

You can download www.py4e.com/code3/geoxml.py to explore the XML variant of the
Google geocoding API.

13.8 Security and API usage

It is quite common that you need some kind of “API key” to make use of a vendor’ s
APIL. The general idea is that they want to know who is using their services and how much
each user is using. Perhaps they have free and pay tiers of their services or have a policy
that limits the number of requests that a single individual can make during a particular
time period.

Sometimes once you get your API key, you simply include the key as part of POST data or
perhaps as a parameter on the URL when calling the API.

Other times, the vendor wants increased assurance of the source of the requests and so
they add expect you to send cryptographically signed messages using shared keys and
secrets. A very common technology that is used to sign requests over the Internet is called
OAuth. You can read more about the OAuth protocol at www.oauth.net.

As the Twitter API became increasingly valuable, Twitter went from an open and public
API to an API that required the use of OAuth signatures on each API request. Thankfully
there are still a number of convenient and free OAuth libraries so you can avoid writing
an OAuth implementation from scratch by reading the specification. These libraries are
of varying complexity and have varying degrees of richness. The OAuth web site has in-
formation about various OAuth libraries.

For this next sample program we will download the files twurl.py, hidden.py, oauth.py,
and twitterl.py from www.py4e.com/code and put them all in a folder on your computer.

To make use of these programs you will need to have a Twitter account, and authorize
your Python code as an application, set up a key, secret, token and token secret. You will
edit the file hidden.py and put these four strings into the appropriate variables in the file:

Keep this file separate

https://apps.twitter.com/
Create new App and get the four strings

def oauth():
return {"consumer_key": "h7Lu...Ng",
"consumer_secret": "dNKenAC3New...mmn7Q",
"token_key": "10185562-eibxCp9n2...P4GEQQOSGI",
"token_secret": "HOycCFemmC4wyfl...qoIpBo"}

Code: http://www.py4e.com/code3/hidden.py

http://www.py4e.com/code3/geoxml.py
http://www.oauth.net
http://www.py4e.com/code3

154 CHAPTER 13. USING WEB SERVICES

The Twitter web service are accessed using a URL like this:
https://api.twitter.com/1.1/statuses/user_timeline.json

But once all of the security information has been added, the URL will look more like:

https://api.twitter.com/1.1/statuses/user_timeline. json?count=2
&oauth_version=1.0&oauth_token=101...SGI&screen_name=drchuck
&oauth_nonce=09239679&oauth_timestamp=1380395644
&oauth_signature=rLK...BoD&oauth_consumer_key=h7Lu...GNg
&oauth_signature_method=HMAC-SHA1

You can read the OAuth specification if you want to know more about the meaning of the
various parameters that are added to meet the security requirements of OAuth.

For the programs we run with Twitter, we hide all the complexity in the files oauth.py and
twurl.py. We simply set the secrets in hidden.py and then send the desired URL to the
twurl.augment() function and the library code adds all the necessary parameters to the
URL for us.

This program retrieves the timeline for a particular Twitter user and returns it to us in
JSON format in a string. We simply print the first 250 characters of the string:

import urllib.request, urllib.parse, urllib.error
import twurl
import ssl

https://apps.twitter.com/
Create App and get the four strings, put them in hidden.py

TWITTER_URL = 'https://api.twitter.com/1.1/statuses/user_timeline.json'

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

while True:
print('")
acct = input('Enter Twitter Account:')
if (len(acct) < 1): break
url = twurl.augment (TWITTER_URL,
{'screen_name': acct, 'count': '2'})
print ('Retrieving', url)
connection = urllib.request.urlopen(url, context=ctx)
data = connection.read().decode()
print(datal:250])
headers = dict(connection.getheaders())
print headers
print('Remaining', headers['x-rate-limit-remaining'])

Code: http://www.pyde.com/code3/twitterl.py

https://api.twitter.com/1.1/statuses/user_timeline.json

13.8. SECURITY AND API USAGE

When the program runs it produces the following output:

Enter Twitter Account:drchuck

Retrieving https://api.twitter.com/1.1/ ...
[{"created_at":"Sat Sep 28 17:30:25 +0000 2013","
id":384007200990982144,"id_str":"384007200990982144",
"text":"RT @fixpert: See how the Dutch handle traffic
intersections: http:\/\/t.co\/tIiVWtEhj4\n#brilliant",
"source":"web","truncated":false,"in_rep

Remaining 178

Enter Twitter Account:fixpert

Retrieving https://api.twitter.com/1.1/ ...
[{"created_at":"Sat Sep 28 18:03:56 +0000 2013",
"id":384015634108919808,"id_str":"384015634108919808",
"text":"3 months after my freak bocce ball accident,

my wedding ring fits again! :)\n\nhttps:\/\/t.co\/2XmHPx7kgX",

"source":"web","truncated":false,
Remaining 177

Enter Twitter Account:

155

Along with the returned timeline data, Twitter also returns metadata about the request in
the HTTP response headers. One header in particular, x-rate-limit-remaining, informs us
how many more requests we can make before we will be shut off for a short time period.
You can see that our remaining retrievals drop by one each time we make a request to the

API.

In the following example, we retrieve a user’ s Twitter friends, parse the returned JSON,
and extract some of the information about the friends. We also dump the JSON after pars-
ing and “pretty-print” it with an indent of four characters to allow us to pore through

the data when we want to extract more fields.

import urllib.request, urllib.parse, urllib.error

import twurl
import json
import ssl

https://apps.twitter.com/

Create App and get the four strings, put them in hidden.py

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json’

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

while True:
print('")
acct = input('Enter Twitter Account:')
if (len(acct) < 1): break

156 CHAPTER 13. USING WEB SERVICES

url = twurl.augment (TWITTER_URL,

{'screen_name': acct, 'count': '5'})
print('Retrieving', url)
connection = urllib.request.urlopen(url, context=ctx)
data = connection.read().decode()

js = json.loads(data)
print(json.dumps(js, indent=2))

headers = dict(connection.getheaders())
print('Remaining', headers['x-rate-limit-remaining'])

for u in js['users']:
print(ul'screen_name'])
if 'status' not imn u:
print (" * No status found')
continue
s = ul'status'] ['text']
print (' ', s[:50])

Code: http://www.pyle.com/code3/twitter2. py

Since the JSON becomes a set of nested Python lists and dictionaries, we can use a com-
bination of the index operation and for loops to wander through the returned data struc-
tures with very little Python code.

The output of the program looks as follows (some of the data items are shortened to fit on
the page):

Enter Twitter Account:drchuck
Retrieving https://api.twitter.com/1.1/friends ...
Remaining 14

"next_cursor": 1444171224491980205,
"users": [
{
"id": 662433,
"followers_count": 28725,
"status": {
"text": "Q@jazzychad I just bought one .__.",
"created_at": "Fri Sep 20 08:36:34 +0000 2013",
"retweeted": false,
},
"location": "San Francisco, California",
"screen_name": "leahculver",
"name": "Leah Culver",

"id": 40426722,
"followers_count": 2635,

13.9. GLOSSARY 157

"status": {
"text": "RT @WSJ: Big employers like Google ...",
"created_at": "Sat Sep 28 19:36:37 +0000 2013",
}’
"location": "Victoria Canada",
"screen_name": " _valeriei',
"name": "Valerie Irvine",
1,
"next_cursor_str": "1444171224491980205"
}
leahculver
@jazzychad I just bought one .__
_valeriei
RT @WSJ: Big employers like Google, AT&T are h
ericbollens
RT @lukew: sneak peek: my LONG take on the good &a
halherzog
Learning Objects is 10. We had a cake with the LO,
scweeker

@DevicelLabDC love it! Now where so I get that "etc

Enter Twitter Account:

The last bit of the output is where we see the for loop reading the five most recent
“friends” of the drchuck Twitter account and printing the most recent status for each
friend. There is a great deal more data available in the returned JSON. If you look in
the output of the program, you can also see that the “find the friends” of a particular
account has a different rate limitation than the number of timeline queries we are
allowed to run per time period.

These secure API keys allow Twitter to have solid confidence that they know who is using
their API and data and at what level. The rate-limiting approach allows us to do simple,
personal data retrievals but does not allow us to build a product that pulls data from their
API millions of times per day.

13.9 Glossary

API Application Program Interface - A contract between applications that defines the pat-
terns of interaction between two application components.

ElementTree A built-in Python library used to parse XML data.

JSON JavaScript Object Notation. A format that allows for the markup of structured data
based on the syntax of JavaScript Objects.

SOA Service-Oriented Architecture. When an application is made of components con-
nected across a network.

XML eXtensible Markup Language. A format that allows for the markup of structured
data.

158 CHAPTER 13. USING WEB SERVICES

13.10 Exercises

Exercise 1: Change either the www.py4e.com/code3/geojson.py or www.py4e.com/code3/
geoxml.py to print out the two-character country code from the retrieved data. Add error
checking so your program does not traceback if the country code is not there. Once you
have it working, search for “Atlantic Ocean” and make sure it can handle locations that
are not in any country.

http://www.py4e.com/code3/geojson.py
http://www.py4e.com/code3/geoxml.py
http://www.py4e.com/code3/geoxml.py

Chapter 14

Object-Oriented Programming

14.1 Managing Larger Programs

At the beginning of this book, we came up with four basic programming patterns which
we use to construct programs:

Sequential code

Conditional code (if statements)
Repetitive code (loops)

Store and reuse (functions)

In later chapters, we explored simple variables as well as collection data structures like
lists, tuples, and dictionaries.

As we build programs, we design data structures and write code to manipulate those data
structures. There are many ways to write programs and by now, you probably have written
some programs thatare “notso elegant” and other programs thatare “more elegant” .
Even though your programs may be small, you are starting to see how there is a bit of
art” and “aesthetic” to writing code.

«

As programs get to be millions of lines long, it becomes increasingly important to write
code that is easy to understand. If you are working on a million line program, you can
never keep the entire program in your mind at the same time. So we need ways to break
the program into multiple smaller pieces so to solve a problem, fix a bug, or add a new
feature we have less to look at.

In a way, object oriented programming is a way to arrange your code so that you can zoom
into 500 lines of the code, and understand it while ignoring the other 999,500 lines of code
for the moment.

14.2 Getting Started

Like many aspects of programming it is necessary to learn the concepts of object oriented
programming before you can use them effectively. So approach this chapter as a way to

159

160 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

learn some terms and concepts and work through a few simple examples to lay a founda-
tion for future learning. Throughout the rest of the book we will be using objects in many
of the programs but we won’ t be building our own new objects in the programs.

The key outcome of this chapter is to have a basic understanding of how objects are con-
structed and how they function and most importantly how we make use of the capabilities
of objects that are provided to us by Python and Python libraries.

14.3 Using Objects

It turns out we have been using objects all along in this class. Python provides us with
many built-in objects. Here is some simple code where the first few lines should feel very
simple and natural to you.

stuff = list()
stuff.append('python')
stuff.append('chuck')
stuff.sort()

print (stuff[0])

print (stuff.__getitem__(0))
print (list.__getitem__(stuff,0))

Code: http://www.pyse.com/code3/partyl.py

But instead of focusing on what these lines accomplish, lets look at what is really happen-
ing from the point of view of object-oriented programming. Don’ tworry if the following
paragraphs don’ t make any sense the first time you read them because we have not yet
defined all these terms.

The first line is constructing an object of type list, the second and third lines are calling
the append () method, the fourth line is calling the sort () method, and the fifth line is
retrieving the item at position 0.

The sixth line is calling the __getitem__() method in the stuff list with a parameter
of zero.

print (stuff.__getitem__(0))
The seventh line is an even more verbose way of retrieving the 0th item in the list.
print (list.__getitem__(stuff,0))

In this code, we care calling the __getitem__ method in the 1ist class and passing in
the list (stuff) and the item we want retrieved from the list as parameters.

The last three lines of the program are completely equivalent, but it is more convenient to
simply use the square bracket syntax to look up an item at a particular position in a list.

We can take a look into the capabilities of an object by looking at the output of the dir ()
function:

14.4. STARTING WITH PROGRAMS 161

Program

Input —> — Output

Figure 14.1: A Program

>>> stuff = list()
>>> dir(stuff)

['__add__', '__class__', '__contains__', '__delattr__',
'__delitem__', '__dir__', '__doc__', '__eq__"',
'__format__', '__ge__', '__getattribute__', '__getitem__"',
'__gt__', '__hash__', '__iadd__', '__imul__', '__init__',
'__iter__', '__le__', '_len__', '__1t__', '__mul__"',
'__ne__', '__new__', '__reduce__', '__reduce_ex__"',
'__repr__', '__reversed__', '__rmul__', '__setattr__',

' __setitem__', '__sizeof__', '__str__', '__subclasshook__"',
'append', 'clear', 'copy', 'count', 'extend', 'index',
'insert', 'pop', 'remove', 'reverse', 'sort']

>>>

The precise definition of dir () is that it lists the methods and attributes of a Python
object.

The rest of this chapter will define all of the above terms so make sure to come back after
you finish the chapter and re-read the above paragraphs to check your understanding.

14.4 Starting with Programs

A program in its most basic form takes some input, does some processing, and produces
some output. Our elevator conversion program demonstrates a very short but complete
program showing all three of these steps.

usf = input('Enter the US Floor Number: ')
wf = int(usf) - 1
print('Non-US Floor Number is',wf)

Code: http://www.pyse.com/code3/elev.py

If we think a bit more about this program, there isthe “outside world” and the program.
The input and output aspects are where the program interacts with the outside world.
Within the program we have code and data to accomplish the task the program is designed
to solve.

When we are “in” the program, we have some defined interactions with the “outside”
world, but those interactions are well defined and generally not something we focus on.
While we are coding we worry only about the details “inside the program” .

162 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

One way to think about object oriented programming is that we are separating our pro-
gram into multiple “zones” . Fach “zone” contains some code and data (like a pro-
gram) and has well defined interactions with the outside world and the other zones within
the program.

If we look back at the link extraction application where we used the BeautifulSoup library,
we can see a program that is constructed by connecting different objects together to ac-
complish a task:

To run thts, you can install BeautifulSoup
https://pypi.python.org/pypi/beautifulsoups

Or download the file
http://www.pyde.com/code3/bss.zip
and unzip 1t in the same directory as this file

import urllib.request, urllib.parse, urllib.error
from bs4 import BeautifulSoup
import ssl

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urllib.request.urlopen(url, context=ctx).read()
soup = BeautifulSoup(html, 'html.parser')

Retrieve all of the anchor tags

tags = soup('a')

for tag in tags:
print(tag.get('href', None))

Code: http://www.pyje.com/code3/urllinks.py

We read the URL into a string, and then pass that into url1lib to retrieve the data from the
web. The urllib library uses the socket library to make the actual network connection
to retrieve the data. We take the string that we get back from ur11ib and hand it to Beau-
tifulSoup for parsing. BeautifulSoup makes use of another object called html . parser!
and returns an object. We call the tags () method in the returned object and then get a
dictionary of tag objects, and loop through the tags and call the get () method for each
tagto print out the ‘href’ attribute.

We can draw a picture of this program and how the objects work together.

The key here is not to fully understand how this program works but to see how we build
a network of interacting objects and orchestrate the movement of information between
the objects to create a program. It is also important to note that when you looked at that

Thttps://docs.python.org/3/library/html.parser.html

14.5. SUBDIVIDING A PROBLEM - ENCAPSULATION 163

String Dictionary _ | String
Input > Object Object ™| Object — Output
Urllib Object BeautifulSoup
Object
Socket html.parser
Object Object

Figure 14.2: A Program as Network of Objects

String Dictionary String
Input *>| Object Object > Object — Output

Figure 14.3: Ignoring Detail When Using an Object

program several chapters back, you could fully understand what was going on in the pro-
gram without even realizing that the program was “orchestrating the movement of data
between objects” . Back then it was just lines of code that got the job done.

14.5 Subdividing a Problem - Encapsulation

One of the advantages of the object oriented approach is that it can hide complexity. For
example, while we need to know how to use the urllib and BeautifulSoup code, we do
not need to know how those libraries work internally. It allows us to focus on the part of
the problem we need to solve and ignore the other parts of the program.

This ability to focus on a part of a program that we care about and ignore the rest of the
program is also helpful to the developers of the objects. For example the programmers
developing BeautifulSoup do not need to know or care about how we retrieve our HTML
page, what parts we want to read or what we plan to do with the data we extract from the
web page.

Another word we use to capture this idea that we ignore the internal detail of objects we
use is “encapsulation” . This means that we can know how to use an object without
knowing how it internally accomplishes what we need done.

164 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

BeautifulSoup
Object

Figure 14.4: Ignoring Detail When Building an Object

14.6 Our First Python Object

At its simplest, an object is some code plus data structures that is smaller than a whole
program. Defining a function allows us to store a bit of code and give it a name and then
later invoke that code using the name of the function.

An object can contain a number of functions (which we call “methods”) as well as data
thatis used by those functions. We call data items that are part of the object “attributes” .

We use the class keyword to define the data and code that will make up each of the
objects. The class keyword includes the name of the class and begins an indented block
of code where we include the attributes (data) and methods (code).

class PartyAnimal:
x =0

def party(self)
self.x = self.x + 1
print("So far",self.x)

an = PartyAnimal()
an.party()

an.party()

an.party()
PartyAnimal.party(an)

Code: http://www.pyse.com/code3/party2.py

Each method looks like a function, starting with the def keyword and consisting of an
indented block of code. This example has one attribute (x) and one method (party). The
methods have a special first parameter that we name by convention self.

Much like the def keyword does not cause function code to be executed, the class key-
word does not create an object. Instead, the class keyword defines a template indicating
what data and code will be contained in each object of type PartyAnimal. The class is
like a cookie cutter and the objects created using the class are the cookies?. Youdon’ tput
frosting on the cookie cutter, you put frosting on the cookies - and you can put different
frosting on each cookie.

2Cookie image copyright CC-BY https://www.flickr.com/photos/dinnerseries/23570475099

14.6. OUR FIRST PYTHON OBJECT 165

Figure 14.5: A Class and Two Objects

If you continue through the example code, we see the first executable line of code:
an = PartyAnimal ()

This is where we instruct Python to construct (e.g. create) an object or “instance of the
class named PartyAnimal” . It looks like a function call to the class itself and Python
constructs the object with the right data and methods and returns the object which is
then assigned to the variable an. In a way this is quite similar to the following line which
we have been using all along:

counts = dict()

Here we are instructing Python to construct an object using the dict template (already
present in Python), return the instance of dictionary and assign it to the variable counts.

When the PartyAnimal class is used to construct an object, the variable an is used to point
to that object. We use an to access the code and data for that particular instance of a
PartyAnimal object.

Each Partyanimal object/instance contains within it a variable x and a method/function
named party. We call that party method in this line:

an.party()

When the party method is called, the first parameter (which we call by convention
self) points to the particular instance of the PartyAnimal object that party is called
from within. Within the party method, we see the line:

self.x = self.x + 1

This syntax using the ‘dot’ operator is saying ‘the x within self’ . So each time
party () is called, the internal x value is incremented by 1 and the value is printed out.

To help make sense of the difference between a global function and a method within a
class/object, the following line is another way to call the party method within the an
object:

166 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING
PartyAnimal.party (an)

In this variation, we are accessing the code from within the class and explicitly passing
the object pointer an in as the first parameter (i.e. self within the method). You can think
of an.party() as shorthand for the above line.

When the program executes, it produces the following output:

So far
So far
So far
So far

S W N -

The object is constructed, and the party method is called four times, both incrementing
and printing the value for x within the an object.

14.7 Classes as Types

As we have seen, in Python, all variables have a type. And we can use the built-in dir
function to examine the capabilities of a variable. We can use type and dir with the
classes that we create.

class PartyAnimal:
x =0

def party(self)
self.x = self.x + 1
print("So far",self.x)

an = PartyAnimal()

print ("Type", type(an))

print ("Dir ", dir(an))

print ("Type", type(an.x))
print ("Type", type(an.party))

Code: http://www.pyde.com/code3/party3.py

When this program executes, it produces the following output:

Type <class '__main__.PartyAnimal'>

Dir ['__class__', '__delattr__',

' __sizeof__', '__str__', '__subclasshook__',
'__weakref__', 'party', 'x']

Type <class 'int'>
Type <class 'method'>

You can see that using the class keyword, we have created a new type. From the dir
output, you can see both the x integer attribute and the party method are available in
the object.

14.8. OBJECT LIFECYCLE 167
14.8 Object Lifecycle

In the previous examples, we are defining a class (template) and using that class to create
an instance of that class (object) and then using the instance. When the program fin-
ishes, all the variables are discarded. Usually we don’ t think much about the creation
and destruction of variables, but often as our objects become more complex, we need to
take some action within the object to set things up as the object is being constructed and
possibly clean things up as the object is being discarded.

If we want our object to be aware of these moments of construction and destruction, we
add specially named methods to our object:

class PartyAnimal:
x =0

def __init__(self):
print('I am constructed')

def party(self)
self.x = self.x + 1
print('So far',self.x)

def __del__(self):
print('I am destructed', self.x)

an = PartyAnimal ()
an.party()

an.party()

an = 42

print('an contains',an)

Code: http://www.pyide.com/code3/partys.py

When this program executes, it produces the following output:

I am constructed
So far 1

So far 2

I am destructed 2
an contains 42

As Python is constructing our object, it calls our __init__ method to give us a chance to
set up some default or initial values for the object. When Python encounters the line:

an = 42

It actually ‘thows our object away’ so it can reuse the an variable to store the value
42. Just at the moment when our an object is being ‘destroyed’ our destructor code
(__del__) is called. We cannot stop our variable from being destroyed, but we can do
any necessary cleanup right before our object no longer exists.

When developing objects, it is quite common to add a constructor to an object to set in
initial values in the object, it is relatively rare to need to need a destructor for an object.

168 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

14.9 Many Instances

So far, we have been defining a class, making a single object, using that object, and then
throwing the object away. But the real power in object oriented happens when we make
many instances of our class.

When we are making multiple objects from our class, we might want to set up different
initial values for each of the objects. We can pass data into the constructors to give each
object a different initial value:

class PartyAnimal:
x =0
name =
def __init__(self, nam):
self .name = nam
print (self .name, 'constructed')

L)

def party(self)
self.x = self.x + 1
print(self.name, 'party count',self.x)

s = PartyAnimal('Sally')

s.party ()

j = PartyAnimal('Jim')

j.party ()

s.party()

Code: http://www.pyde.com/code3/partys.py

The constructor has both a self parameter that points to the object instance and then ad-
ditional parameters that are passed into the constructor as the object is being constructed:

s = PartyAnimal('Sally')
Within the constructor, the line:
self .name = nam

Copies the parameter that is passed in (nam) into the name attribute within the object
instance.

The output of the program shows that each of the objects (s and j) contain their own
independent copies of x and nam:

Sally constructed
Sally party count 1
Jim constructed
Jim party count 1
Sally party count 2

14.10. INHERITANCE 169
14.10 Inheritance

Another powerful feature of object oriented programming is the ability to create a new
class by extending an existing class. When extending a class, we call the original class the
‘parent class’ and the new class as the ‘child class’ .

For this example, we will move our PartyAnimal class into its own file:

class PartyAnimal:
x =0
name =
def __init__(self, nam):
self.name = nam
print(self.name, 'constructed')

def party(self)
self.x = self.x + 1
print(self.name, 'party count',self.x)

Code: http://www.pyse.com/code3/party.py
Then, we can ‘import’ the PartyAnimal class in a new file and extend it as follows:

from party import PartyAnimal

class CricketFan(PartyAnimal):
points = 0
def six(self):
self.points = self.points + 6
self.party()
print(self.name,"points",self.points)

s = PartyAnimal("Sally")
s.party()

j = CricketFan("Jim")
j.party()

j.six()

print(dir(j))

Code: http://www.pyde.com/code3/partyb.py

When we are defining the CricketFan object, we indicate that we are extending the
PartyAnimal class. This means that all of the variables (x) and methods (party) from
the PartyAnimal class are inherited by the CricketFan class.

You can see that within the six method in the CricketFan class, we can call the party
method from the PartyAnimal class. The variables and methods from the parent class
are merged into the child class.

As the program executes, we can see that the s and j are independent instances of
PartyAnimal and CricketFan. The j object has additional capabilities beyond the s
object.

170 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

Sally constructed

Sally party count 1

Jim constructed

Jim party count 1

Jim party count 2

Jim points 6

['__class__', '__delattr__', ... '__weakref__',
'name', 'party', 'points', 'six', 'x']

In the dir output for the j object (instance of the CricketFan class) you can see that
it both has the attributes and methods of the parent class as well as the attributes and
methods that were added when the class was extended to create the CricketFan class.

14.11 Summary

This is a very quick introduction to object-oriented programming that focuses mainly on
terminology and the syntax of defining and using objects. Let’ s quickly review the code
that we looked at in the beginning of the chapter. At this point you should fully understand
what is going on.

stuff = list()
stuff.append('python')
stuff.append('chuck')
stuff.sort()

print (stuff[0])

print (stuff.__getitem__(0))
print (list.__getitem__(stuff,0))

Code: http://www.pyie.com/code3/partyl.py

The first line constructs a 1ist object. When Python creates the 1ist object, it calls the
constructor method (named __init__) to set up the internal data attributes that will be
used to store the list data. Due to encapsulation we neither need to know, nor need to
care about these in internal data attributes are arranged.

We are not passing any parameters to the constructor and when the constructor returns,
we use the variable stuff to point to the returned instance of the 1ist class.

The second and third lines are calling the append method with one parameter to add a
new item at the end of the list by updating the attributes within stuff. Then in the fourth
line, we call the sort method with no parameters to sort the data within the stuff object.

Then we print out the first item in the list using the square brackets which are a shortcut
to calling the __getitem__ method within the stuff object. And this is equivalent to
calling the __getitem__ method in the 1ist class passing the stuff object in as the
first parameter and the position we are looking for as the second parameter.

At the end of the program the stuff object is discarded but not before calling the destruc-
tor (named __del__) so the object can clean up any loose ends as necessary.

14.12. GLOSSARY 171

Those are the basics and terminology of object oriented programming. There are many
additional details as to how to best use object oriented approaches when developing large
applications and libraries that are beyond the scope of this chapter.®

14.12 Glossary

attribute A variable that is part of a class.

class A template that can be used to construct an object. Defines the attributes and meth-
ods that will make up the object.

child class A new class created when a parent class is extended. The child class inherits
all of the attributes and methods of the parent class.

constructor An optional specially named method (__init__) that is called at the mo-
ment when a class is being used to construct an object. Usually this is used to set
up initial values for the object.

destructor An optional specially named method (__del__) thatis called at the moment
just before an object is destroyed. Destructors are rarely used.

inheritance When we create a new class (child) by extending an existing class (parent).
The child class has all the attributes and methods of the parent class plus additional
attributes and methods defined by the child class.

method A function that is contained within a class and the objects that are con-
structed from the class. Some object-oriented patterns use ‘message’ instead of

‘method’ to describe this concept.

object A constructed instance of a class. An object contains all of the attributes and meth-
ods that were defined by the class. Some object-oriented documentation uses the
term ‘instance’ interchangeably with ‘object’ .

parent class The class which is being extended to create a new child class. The parent
class contributes all of its methods and attributes to the new child class.

3If you are curious about where the list class is defined, take a look at (hopefully the URL won’ t change)
https://github.com/python/cpython/blob/master/Objects/listobject.c - the list class is written in a language
called “C” . If you take a look at that source code and find it curious you might want to explore a few Com-
puter Science courses.

172 CHAPTER 14. OBJECT-ORIENTED PROGRAMMING

Chapter 15

Using databases and SQL

15.1 What is a database?

A database is a file that is organized for storing data. Most databases are organized like
a dictionary in the sense that they map from keys to values. The biggest difference is
that the database is on disk (or other permanent storage), so it persists after the program
ends. Because a database is stored on permanent storage, it can store far more data than
a dictionary, which is limited to the size of the memory in the computer.

Like a dictionary, database software is designed to keep the inserting and accessing of data
very fast, even for large amounts of data. Database software maintains its performance
by building indexes as data is added to the database to allow the computer to jump quickly
to a particular entry.

There are many different database systems which are used for a wide variety of purposes
including: Oracle, MySQL, Microsoft SQL Server, PostgreSQL, and SQLite. We focus on
SQLite in this book because it is a very common database and is already built into Python.
SQLite is designed to be embedded into other applications to provide database support
within the application. For example, the Firefox browser also uses the SQLite database
internally as do many other products.

http://sqlite.org/

SQLite is well suited to some of the data manipulation problems that we see in Informatics
such as the Twitter spidering application that we describe in this chapter.

15.2 Database concepts

When you first look at a database it looks like a spreadsheet with multiple sheets. The
primary data structures in a database are: tables, rows, and columns.

In technical descriptions of relational databases the concepts of table, row, and column
are more formally referred to as relation, tuple, and attribute, respectively. We will use
the less formal terms in this chapter.

173

http://sqlite.org/

174 CHAPTER 15. USING DATABASES AND SQL

column attribute

Table Relation

row 2.3 tuple 2.3

Figure 15.1: Relational Databases

15.3 Database Browser for SQLite

While this chapter will focus on using Python to work with data in SQLite database files,
many operations can be done more conveniently using software called the Database
Browser for SQLite which is freely available from:

http://sqlitebrowser.org/

Using the browser you can easily create tables, insert data, edit data, or run simple SQL
queries on the data in the database.

In a sense, the database browser is similar to a text editor when working with text files.
When you want to do one or very few operations on a text file, you can just open it in a text
editor and make the changes you want. When you have many changes that you need to do
to a text file, often you will write a simple Python program. You will find the same pattern
when working with databases. You will do simple operations in the database manager
and more complex operations will be most conveniently done in Python.

15.4 Creating a database table

Databases require more defined structure than Python lists or dictionaries®.

When we create a database table we must tell the database in advance the names of each
of the columns in the table and the type of data which we are planning to store in each
column. When the database software knows the type of data in each column, it can choose
the most efficient way to store and look up the data based on the type of data.

You can look at the various data types supported by SQLite at the following url:
http://www.sqlite.org/datatypes.html

Defining structure for your data up front may seem inconvenient at the beginning, but
the payoff is fast access to your data even when the database contains a large amount of
data.

The code to create a database file and a table named Tracks with two columns in the
database is as follows:

1SQLite actually does allow some flexibility in the type of data stored in a column, but we will keep our data
types strict in this chapter so the concepts apply equally to other database systems such as MySQL.

http://sqlitebrowser.org/
http://www.sqlite.org/datatypes.html

15.4. CREATING A DATABASE TABLE 175

execute

fetchone Users Courses
fetchall

close

Members

Your
Program

Figure 15.2: A Database Cursor

import sqlite3

conn = sqlite3.connect('music.sqlite')
cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')
cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER) ')

conn.close()

Code: http://www.pyde.com/code3/dbl.py

The connect operation makes a “connection” to the database stored in the file
music.sqlite3 in the current directory. If the file does not exist, it will be created.
The reason this is called a “connection” is that sometimes the database is stored on a
separate “database server” from the server on which we are running our application.
In our simple examples the database will just be a local file in the same directory as the
Python code we are running.

A cursor is like a file handle that we can use to perform operations on the data stored
in the database. Calling cursor () is very similar conceptually to calling open() when
dealing with text files.

Once we have the cursor, we can begin to execute commands on the contents of the
database using the execute () method.

Database commands are expressed in a special language that has been standardized
across many different database vendors to allow us to learn a single database language.
The database language is called Structured Query Language or SQL for short.

http://en.wikipedia.org/wiki/SQL

In our example, we are executing two SQL commands in our database. As a convention,
we will show the SQL keywords in uppercase and the parts of the command that we are
adding (such as the table and column names) will be shown in lowercase.

The first SQL command removes the Tracks table from the database if it exists. This
pattern is simply to allow us to run the same program to create the Tracks table over

http://en.wikipedia.org/wiki/SQL

176 CHAPTER 15. USING DATABASES AND SQL

and over again without causing an error. Note that the DROP TABLE command deletes
the table and all of its contents from the database (i.e., there isno “undo”).

cur.execute ('DROP TABLE IF EXISTS Tracks ')

The second command creates a table named Tracks with a text column named title
and an integer column named plays.

cur.execute ('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

Now that we have created a table named Tracks, we can put some data into that table
using the SQL INSERT operation. Again, we begin by making a connection to the database
and obtaining the cursor. We can then execute SQL commands using the cursor.

The SQL INSERT command indicates which table we are using and then defines a new row
by listing the fields we want to include (title, plays) followed by the VALUES we want
placed in the new row. We specify the values as question marks (7, 7) to indicate that
the actual values are passed in asa tuple ('My Way', 15) asthe second parameter to
the execute () call.

import sqlite3

conn = sqlite3.connect('music.sqlite')
cur = conn.cursor()

cur.execute('INSERT INTO Tracks (title, plays) VALUES (7, 7)',
('Thunderstruck', 20))

cur.execute('INSERT INTO Tracks (title, plays) VALUES (7, 7)',
('My Way', 15))

conn.commit ()

print('Tracks:')
cur.execute('SELECT title, plays FROM Tracks')
for row in cur:

print (row)

cur.execute('DELETE FROM Tracks WHERE plays < 100')
cur.close()

Code: http://www.pyde.com/code3/db2.py

First we INSERT two rows into our table and use commit () to force the data to be written
to the database file.

Then we use the SELECT command to retrieve the rows we just inserted from the table.
On the SELECT command, we indicate which columns we would like (title, plays)
and indicate which table we want to retrieve the data from. After we execute the SELECT
statement, the cursor is something we can loop through in a for statement. For efficiency,
the cursor does not read all of the data from the database when we execute the SELECT

15.5. STRUCTURED QUERY LANGUAGE SUMMARY 177

Tracks
title plays
Thunderstruck 20
My Way 15

Figure 15.3: Rows in a Table

statement. Instead, the data is read on demand as we loop through the rows in the for
statement.

The output of the program is as follows:

Tracks:
('Thunderstruck', 20)
('My Way', 15)

Our for loop finds two rows, and each row is a Python tuple with the first value as the
title and the second value as the number of plays.

Note: You may see strings starting with ' in other books or on the Internet. This was
an indication in Python 2 that the strings are Unicode* strings that are capable of storing
non-Latin character sets. In Python 3, all strings are unicode strings by default*

Atthe very end of the program, we execute an SQL command to DELETE the rows we have
just created so we can run the program over and over. The DELETE command shows the
use of a WHERE clause that allows us to express a selection criterion so that we can ask the
database to apply the command to only the rows that match the criterion. In this example
the criterion happens to apply to all the rows so we empty the table out so we can run the
program repeatedly. After the DELETE is performed, we also call commit () to force the
data to be removed from the database.

15.5 Structured Query Language summary

So far, we have been using the Structured Query Language in our Python examples and
have covered many of the basics of the SQL commands. In this section, we look at the
SQL language in particular and give an overview of SQL syntax.

Since there are so many different database vendors, the Structured Query Language (SQL)
was standardized so we could communicate in a portable manner to database systems
from multiple vendors.

A relational database is made up of tables, rows, and columns. The columns generally
have a type such as text, numeric, or date data. When we create a table, we indicate the
names and types of the columns:

CREATE TABLE Tracks (title TEXT, plays INTEGER)

178 CHAPTER 15. USING DATABASES AND SQL

To insert a row into a table, we use the SQL INSERT command:

INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)

The INSERT statement specifies the table name, then a list of the fields/columns that you
would like to set in the new row, and then the keyword VALUES and a list of corresponding
values for each of the fields.

The SQL SELECT command is used to retrieve rows and columns from a database. The
SELECT statement lets you specify which columns you would like to retrieve as well as a
WHERE clause to select which rows you would like to see. It also allows an optional ORDER
BY clause to control the sorting of the returned rows.

SELECT * FROM Tracks WHERE title = 'My Way'

Using * indicates that you want the database to return all of the columns for each row that
matches the WHERE clause.

Note, unlike in Python, in a SQL WHERE clause we use a single equal sign to indicate a test
for equality rather than a double equal sign. Other logical operations allowed in a WHERE
clause include <, >, <=, >= 1= aswell as AND and OR and parentheses to build your logical
expressions.

You can request that the returned rows be sorted by one of the fields as follows:

SELECT title,plays FROM Tracks ORDER BY title

To remove a row, you need a WHERE clause on an SQL DELETE statement. The WHERE
clause determines which rows are to be deleted:

DELETE FROM Tracks WHERE title = 'My Way'

It is possible to UPDATE a column or columns within one or more rows in a table using
the SQL UPDATE statement as follows:

UPDATE Tracks SET plays = 16 WHERE title = 'My Way'

The UPDATE statement specifies a table and then a list of fields and values to change after
the SET keyword and then an optional WHERE clause to select the rows that are to be up-
dated. A single UPDATE statement will change all of the rows that match the WHERE clause.
If a WHERE clause is not specified, it performs the UPDATE on all of the rows in the table.

These four basic SQL commands (INSERT, SELECT, UPDATE, and DELETE) allow the four
basic operations needed to create and maintain data.

15.6. SPIDERING TWITTER USING A DATABASE 179
15.6 Spidering Twitter using a database

In this section, we will create a simple spidering program that will go through Twitter
accounts and build a database of them. Note: Be very careful when running this program.
You do not want to pull too much data or run the program for too long and end up having
your Twitter access shut off.

One of the problems of any kind of spidering program is that it needs to be able to be
stopped and restarted many times and you do not want to lose the data that you have
retrieved so far. Youdon’ twantto always restart your data retrieval at the very beginning
so we want to store data as we retrieve it so our program can start back up and pick up
where it left off.

We will start by retrieving one person’ s Twitter friends and their statuses, looping
through the list of friends, and adding each of the friends to a database to be retrieved
in the future. After we process one person’ s Twitter friends, we check in our database
and retrieve one of the friends of the friend. We do this over and over, picking an
“unvisited” person, retrieving their friend list, and adding friends we have not seen to
our list for a future visit.

We also track how many times we have seen a particular friend in the database to get some
sense of their “popularity” .

By storing our list of known accounts and whether we have retrieved the account or not,
and how popular the account is in a database on the disk of the computer, we can stop
and restart our program as many times as we like.

This program is a bit complex. It is based on the code from the exercise earlier in the
book that uses the Twitter AP

Here is the source code for our Twitter spidering application:

from urllib.request import urlopen
import urllib.error

import twurl

import json

import sqlite3

import ssl

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json’

conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()

cur.execute('"'"'
CREATE TABLE IF NOT EXISTS Twitter
(name TEXT, retrieved INTEGER, friends INTEGER)''"')

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

180 CHAPTER 15. USING DATABASES AND SQL

while True:
acct = input('Enter a Twitter account, or quit: ')
if (acct == 'quit'): break
if (len(acct) < 1):
cur.execute('SELECT name FROM Twitter WHERE retrieved = O LIMIT 1')

try:
acct = cur.fetchone() [0]

except:
print('No unretrieved Twitter accounts found')
continue

url = twurl.augment (TWITTER_URL, {'screen_name': acct, 'count': '5'})
print('Retrieving', url)

connection = urlopen(url, context=ctx)

data = connection.read().decode()

headers = dict(connection.getheaders())

print('Remaining', headers['x-rate-limit-remaining'])
js = json.loads(data)

Debugging

print json.dumps(js, indent=4)

cur.execute('UPDATE Twitter SET retrieved=1 WHERE name = 7', (acct,))

countnew = 0
countold 0
for u in js['users']:
friend = ul'screen_name']

print(friend)

cur.execute('SELECT friends FROM Twitter WHERE name = 7 LIMIT 1',
(friend,))

try:

count = cur.fetchone() [0]

cur.execute ('UPDATE Twitter SET friends = ? WHERE name = 7'
(count+1, friend))

countold = countold + 1

B

except:
cur.execute('''INSERT INTO Twitter (name, retrieved, friends)
VALUES (7, 0, 1)''', (friemnd,))
countnew = countnew + 1
print('New accounts=', countnew, ' revisited=', countold)

conn. commit ()
cur.close()
Code: http://www.pyde.com/code3/twspider.py
Our database is stored in the file spider.sqlite3 and it has one table named Twitter.
Each row in the Twitter table has a column for the account name, whether we have

retrieved the friends of this account, and how many times this account has been
“friended” .

15.6. SPIDERING TWITTER USING A DATABASE 181

In the main loop of the program, we prompt the user for a Twitter accountname or “quit”
to exit the program. If the user enters a Twitter account, we retrieve the list of friends and
statuses for that user and add each friend to the database if not already in the database. If
the friend is already in the list, we add 1 to the friends field in the row in the database.

If the user presses enter, we look in the database for the next Twitter account that we
have not yet retrieved, retrieve the friends and statuses for that account, add them to the
database or update them, and increase their friends count.

Once we retrieve the list of friends and statuses, we loop through all of the user items in
the returned JSON and retrieve the screen_name for each user. Then we use the SELECT
statement to see if we already have stored this particular screen_name in the database
and retrieve the friend count (friends) if the record exists.

countnew = 0
countold 0
for u in js['users']
friend = ul['screen name']
print friend
cur.execute('SELECT friends FROM Twitter WHERE name = 7 LIMIT 1',
(friend,))
try:
count = cur.fetchone() [0]
cur.execute ('UPDATE Twitter SET friends = 7 WHERE name = 7',
(count+1, friend))
countold = countold + 1
except:
cur.execute('''INSERT INTO Twitter (name, retrieved, friends)
VALUES (7, 0, 1)"'", (friend,))
countnew = countnew + 1

print 'New accounts=',6countnew,' revisited=',6countold
conn.commit ()

Once the cursor executes the SELECT statement, we must retrieve the rows. We could do
this with a for statement, but since we are only retrieving one row (LIMIT 1), we can use
the fetchone () method to fetch the first (and only) row that is the result of the SELECT
operation. Since fetchone () returns the row as a tuple (even though there is only one
field), we take the first value from the tuple using to get the current friend count into the
variable count.

If this retrieval is successful, we use the SQL UPDATE statement with a WHERE clause to
add 1 to the friends column for the row that matches the friend’ s account. Notice that
there are two placeholders (i.e., question marks) in the SQL, and the second parameter to
the execute () is a two-element tuple that holds the values to be substituted into the SQL
in place of the question marks.

If the code in the try block fails, it is probably because no record matched the WHERE
name = 7 clause on the SELECT statement. So in the except block, we use the SQL
INSERT statement to add the friend’ s screen_name to the table with an indication that
we have not yet retrieved the screen_name and set the friend count to zero.

So the first time the program runs and we enter a Twitter account, the program runs as
follows:

182 CHAPTER 15. USING DATABASES AND SQL

Enter a Twitter account, or quit: drchuck
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 20 revisited= 0O

Enter a Twitter account, or quit: quit

Since this is the first time we have run the program, the database is empty and we create
the database in the file spider.sqlite3and add a table named Twitter to the database.
Then we retrieve some friends and add them all to the database since the database is
empty.

At this point, we might want to write a simple database dumper to take a look at what is
in our spider.sqlite3file:

import sqlite3

conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
cur.execute('SELECT * FROM Twitter')
count = 0
for row in cur:
print (row)
count = count + 1
print(count, 'rows.')
cur.close()

Code: http://www.pyde.com/code3/twdump.py

This program simply opens the database and selects all of the columns of all of the rows
in the table Twitter, then loops through the rows and prints out each row.

If we run this program after the first execution of our Twitter spider above, its output will
be as follows:

('opencontent', 0, 1)
('lhawthorn', 0, 1)
('steve_coppin', 0, 1)
('davidkocher', 0, 1)
('hrheingold', 0, 1)

20 rows.

We see one row for each screen_name, that we have not retrieved the data for that
screen_name, and everyone in the database has one friend.

Now our database reflects the retrieval of the friends of our first Twitter account (drchuck).
We can run the program again and tell it to retrieve the friends of the next “unprocessed”
account by simply pressing enter instead of a Twitter account as follows:

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 18 revisited= 2

Enter a Twitter account, or quit:

15.6. SPIDERING TWITTER USING A DATABASE 183

Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 17 revisited= 3
Enter a Twitter account, or quit: quit

Since we pressed enter (i.e., we did not specify a Twitter account), the following code is
executed:

if (len(acct) < 1)
cur.execute ('SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1')

try:
acct = cur.fetchone() [0]

except:
print 'No unretrieved twitter accounts found'
continue

We use the SQL SELECT statement to retrieve the name of the first (LIMIT 1) user who still
has their “have we retrieved this user” value set to zero. We also use the fetchone ()
[0] pattern within a try/except block to either extract a screen_name from the retrieved
data or put out an error message and loop back up.

If we successfully retrieved an unprocessed screen_name, we retrieve their data as fol-
lows:

url = twurl.augment (TWITTER_URL, {'screen_name': acct, 'count': '20'})
print 'Retrieving', url

connection = urllib.urlopen(url)

data = connection.read()

js = json.loads(data)

cur.execute ('UPDATE Twitter SET retrieved=1 WHERE name = ?', (acct,))

Once we retrieve the data successfully, we use the UPDATE statement to set the retrieved
column to 1 to indicate that we have completed the retrieval of the friends of this account.
This keeps us from retrieving the same data over and over and keeps us progressing for-
ward through the network of Twitter friends.

If we run the friend program and press enter twice to retrieve the next unvisited friend” s
friends, then run the dumping program, it will give us the following output:

('opencontent', 1, 1)
('lhawthorn', 1, 1)
('steve_coppin', 0, 1)
('davidkocher', 0, 1)
('hrheingold', 0, 1)

('cnxorg', 0, 2)
('knoop', 0, 1)
('kthanos', 0, 2)
('LectureTools', 0, 1)

55 rows.

184 CHAPTER 15. USING DATABASES AND SQL

We can see that we have properly recorded that we have visited lhawthorn and
opencontent. Also the accounts cnxorg and kthanos already have two followers.
Since we now have retrieved the friends of three people (drchuck, opencontent, and
lhawthorn) our table has 55 rows of friends to retrieve.

Each time we run the program and press enter it will pick the next unvisited account (e.g.,
the next account will be steve_coppin), retrieve their friends, mark them as retrieved,
and for each of the friends of steve_coppin either add them to the end of the database
or update their friend count if they are already in the database.

Since the program’ s data is all stored on disk in a database, the spidering activity can be
suspended and resumed as many times as you like with no loss of data.

15.7 Basic data modeling

The real power of a relational database is when we create multiple tables and make links
between those tables. The act of deciding how to break up your application data into mul-
tiple tables and establishing the relationships between the tables is called data modeling.
The design document that shows the tables and their relationships is called a data model.

Data modeling is a relatively sophisticated skill and we will only introduce the most basic
concepts of relational data modeling in this section. For more detail on data modeling
you can start with:

http://en.wikipedia.org/wiki/Relational_model

Let’ ssay for our Twitter spider application, instead of just counting a person’ s friends,
we wanted to keep a list of all of the incoming relationships so we could find a list of
everyone who is following a particular account.

Since everyone will potentially have many accounts that follow them, we cannot simply
add a single column to our Twitter table. So we create a new table that keeps track of
pairs of friends. The following is a simple way of making such a table:

CREATE TABLE Pals (from_friend TEXT, to_friend TEXT)

Each time we encounter a person who drchuck is following, we would insert a row of the
form:

INSERT INTO Pals (from_friend,to_friend) VALUES ('drchuck', 'lhawthorn')

As we are processing the 20 friends from the drchuck Twitter feed, we will insert 20
records with “drchuck” as the first parameter so we will end up duplicating the string
many times in the database.

This duplication of string data violates one of the best practices for database normaliza-
tion which basically states that we should never put the same string data in the database
more than once. If we need the data more than once, we create a numeric key for the data
and reference the actual data using this key.

In practical terms, a string takes up a lot more space than an integer on the disk and in
the memory of our computer, and takes more processor time to compare and sort. If we

http://en.wikipedia.org/wiki/Relational_model

15.8. PROGRAMMING WITH MULTIPLE TABLES 185

only have a few hundred entries, the storage and processor time hardly matters. But if
we have a million people in our database and a possibility of 100 million friend links, it is
important to be able to scan data as quickly as possible.

We will store our Twitter accounts in a table named People instead of the Twitter table
used in the previous example. The People table has an additional column to store the
numeric key associated with the row for this Twitter user. SQLite has a feature that auto-
matically adds the key value for any row we insert into a table using a special type of data
column (INTEGER PRIMARY KEY).

We can create the People table with this additional id column as follows:

CREATE TABLE People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGER)

Notice that we are no longer maintaining a friend count in each row of the People table.
When we select INTEGER PRIMARY KEY as the type of our id column, we are indicating
that we would like SQLite to manage this column and assign a unique numeric key to each
row we insert automatically. We also add the keyword UNIQUE to indicate that we will not
allow SQLite to insert two rows with the same value for name.

Now instead of creating the table Pals above, we create a table called Follows with two
integer columns from_id and to_id and a constraint on the table that the combination
of from_id and to_id must be unique in this table (i.e., we cannot insert duplicate rows)
in our database.

CREATE TABLE Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))

When we add UNIQUE clauses to our tables, we are communicating a set of rules that we
are asking the database to enforce when we attempt to insert records. We are creating
these rules as a convenience in our programs, as we will see in a moment. The rules both
keep us from making mistakes and make it simpler to write some of our code.

In essence, in creating this Follows table, we are modellinga “relationship” where one
person “follows” someone else and representing it with a pair of numbers indicating
that (a) the people are connected and (b) the direction of the relationship.

15.8 Programming with multiple tables

We will now redo the Twitter spider program using two tables, the primary keys, and the
key references as described above. Here is the code for the new version of the program:

import urllib.request, urllib.parse, urllib.error
import twurl

import json

import sqlite3

import ssl

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json'

186 CHAPTER 15. USING DATABASES AND SQL

opencontent
lhawthorn

steve_coppin

People

Follows

drchuck
opencontent

lhawthorn
steve_coppin

A W N R
o K= P

Figure 15.4: Relationships Between Tables

conn = sqlite3.connect('friends.sqlite')
cur = conn.cursor ()

cur.execute('''CREATE TABLE IF NOT EXISTS People

(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGER)''')
cur.execute('''CREATE TABLE IF NOT EXISTS Follows

(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))''')

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

while True:
acct = input('Enter a Twitter account, or quit: ')
if (acct == 'quit'): break
if (len(acct) < 1):
cur.execute('SELECT id, name FROM People WHERE retrieved = O LIMIT 1)
try:
(id, acct) = cur.fetchone()
except:
print('No unretrieved Twitter accounts found')
continue
else:
cur.execute('SELECT id FROM People WHERE name = 7 LIMIT 1',
(acct,))
try:

15.8. PROGRAMMING WITH MULTIPLE TABLES 187

id = cur.fetchone() [0]
except:
cur.execute('''INSERT OR IGNORE INTO People
(name, retrieved) VALUES (7, 0)''', (acct,))

conn.commit ()
if cur.rowcount != 1:

print ('Error inserting account:', acct)

continue
id = cur.lastrowid

url = twurl.augment (TWITTER_URL, {'screen_name': acct, 'count': '100'})
print ('Retrieving account', acct)
try:
connection = urllib.request.urlopen(url, context=ctx)
except Exception as err:
print('Failed to Retrieve', err)
break

data = connection.read().decode()
headers = dict(connection.getheaders())

print ('Remaining', headers['x-rate-limit-remaining'])

try:
js = json.loads(data)
except:
print('Unable to parse json')
print(data)
break

Debugging
print (json.dumps (js, indent=4))

if 'users' not in js:
print ('Incorrect JSON received')
print(json.dumps(js, indent=4))
continue

cur.execute ('UPDATE People SET retrieved=1 WHERE name = 7', (acct,))

countnew = 0
countold 0
for u in js['users']:
friend = u['screen_name']

print (friend)

cur.execute('SELECT id FROM People WHERE name = 7 LIMIT 1',
(friend,))

try:

friend_id = cur.fetchone() [0]
countold = countold + 1
except:

188 CHAPTER 15. USING DATABASES AND SQL

cur.execute('''INSERT OR IGNORE INTO People (name, retrieved)
VALUES (7, 0)''', (friend,))
conn. commit ()

if cur.rowcount != 1:
print ('Error inserting account:', friend)
continue

friend_id = cur.lastrowid
countnew = countnew + 1
cur.execute('''INSERT OR IGNORE INTO Follows (from_id, to_id)
VALUES (7, 7)''', (id, friend_id))
print('New accounts=', countnew, ' revisited=', countold)
print('Remaining', headers['x-rate-limit-remaining'])
conn.commit ()
cur.close()

Code: http://www.pyse.com/code3/tufriends.py

This program is starting to get a bit complicated, but it illustrates the patterns that we
need to use when we are using integer keys to link tables. The basic patterns are:

1. Create tables with primary keys and constraints.

2. When we have a logical key for a person (i.e., account name) and we need the id
value for the person, depending on whether or not the person is already in the
People table we either need to: (1) look up the person in the People table and
retrieve the id value for the person or (2) add the person to the People table and
get the id value for the newly added row.

3. Insert the row that captures the “follows” relationship.

We will cover each of these in turn.

15.8.1 Constraints in database tables

As we design our table structures, we can tell the database system that we would like it
to enforce a few rules on us. These rules help us from making mistakes and introducing
incorrect data into out tables. When we create our tables:

cur.execute('''CREATE TABLE IF NOT EXISTS People

(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGER)''')
cur.execute('''CREATE TABLE IF NOT EXISTS Follows

(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))''"')

We indicate that the name column in the People table must be UNIQUE. We also indi-
cate that the combination of the two numbers in each row of the Follows table must
be unique. These constraints keep us from making mistakes such as adding the same
relationship more than once.

We can take advantage of these constraints in the following code:

15.8. PROGRAMMING WITH MULTIPLE TABLES 189

cur.execute('''INSERT OR IGNORE INTO People (name, retrieved)
VALUES (7, 0)'''", (friend,))

We add the OR IGNORE clause to our INSERT statement to indicate that if this particular
INSERT would cause a violation of the “name mustbe unique” rule, the database system
is allowed to ignore the INSERT. We are using the database constraint as a safety net to
make sure we don’ t inadvertently do something incorrect.

Similarly, the following code ensures that we don’ t add the exact same Follows rela-
tionship twice.

cur.execute('''INSERT OR IGNORE INTO Follows
(from_id, to_id) VALUES (7, ?)''', (id, friend_id))

Again, we simply tell the database to ignore our attempted INSERT if it would violate the
uniqueness constraint that we specified for the Follows rows.

15.8.2 Retrieve and/or insert a record

When we prompt the user for a Twitter account, if the account exists, we must look up its
id value. If the account does not yet exist in the People table, we must insert the record
and get the id value from the inserted row.

This is a very common pattern and is done twice in the program above. This code shows
how we look up the id for a friend’ s account when we have extracted a screen_name
from a user node in the retrieved Twitter JSON.

Since over time it will be increasingly likely that the account will already be in the
database, we first check to see if the People record exists using a SELECT statement.

If all goes well? inside the try section, we retrieve the record using fetchone () and then
retrieve the first (and only) element of the returned tuple and store it in friend_id.

If the SELECT fails, the fetchone () [0] code will fail and control will transfer into the
except section.

friend = ul'screen_name']
cur.execute('SELECT id FROM People WHERE name = 7 LIMIT 1',
(friend,))
try:
friend_id = cur.fetchone() [0]
countold = countold + 1
except:
cur.execute('''INSERT OR IGNORE INTO People (name, retrieved)
VALUES (7, 00''', (friend,))
conn.commit ()
if cur.rowcount != 1
print 'Error inserting account:',friend
continue
friend_id = cur.lastrowid
countnew = countnew + 1

2In general, when a sentence starts with “if all goes well” you will find that the code needs to use try/except.

190 CHAPTER 15. USING DATABASES AND SQL

If we end up in the except code, it simply means that the row was not found, so we must
insert the row. We use INSERT OR IGNORE just to avoid errors and then call commit ()
to force the database to really be updated. After the write is done, we can check the
cur.rowcount to see how many rows were affected. Since we are attempting to insert a
single row, if the number of affected rows is something other than 1, it is an error.

If the INSERT is successful, we can look at cur.lastrowid to find out what value the
database assigned to the id column in our newly created row.

15.8.3 Storing the friend relationship

Once we know the key value for both the Twitter user and the friend in the JSON, it is a
simple matter to insert the two numbers into the Follows table with the following code:

cur.execute (' INSERT OR IGNORE INTO Follows (from_id, to_id) VALUES (7, ?)',
(id, friend_id))

Notice that we let the database take care of keeping us from “double-inserting” a rela-
tionship by creating the table with a uniqueness constraint and then adding OR IGNORE
to our INSERT statement.

Here is a sample execution of this program:

Enter a Twitter account, or quit:

No unretrieved Twitter accounts found

Enter a Twitter account, or quit: drchuck
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 20 revisited= 0

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 17 revisited= 3

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 17 revisited= 3

Enter a Twitter account, or quit: quit

We started with the drchuck account and then let the program automatically pick the
next two accounts to retrieve and add to our database.

The following is the first few rows in the People and Follows tables after this run is
completed:

People:

(1, 'drchuck', 1)

(2, 'opencontent', 1)
(3, 'lhawthorn', 1)
(4, 'steve_coppin', 0)
(5, 'davidkocher', 0)
55 rows.

Follows:

(1, 2)

1, 3)

15.9. THREE KINDS OF KEYS 191

(1, 4)
(1, 5)
(1, 6)
60 rows.

You can see the id, name, and visited fields in the People table and you see the num-
bers of both ends of the relationship in the Follows table. In the People table, we can
see that the first three people have been visited and their data has been retrieved. The data
in the Follows table indicates that drchuck (user 1) is a friend to all of the people shown
in the first five rows. This makes sense because the first data we retrieved and stored was
the Twitter friends of drchuck. If you were to print more rows from the Follows table,
you would see the friends of users 2 and 3 as well.

15.9 Three kinds of keys

Now that we have started building a data model putting our data into multiple linked
tables and linking the rows in those tables using keys, we need to look at some terminology
around keys. There are generally three kinds of keys used in a database model.

A logical key is a key that the “real world” might use to look up a row. In our
example data model, the name field is a logical key. It is the screen name for the
user and we indeed look up a user’ s row several times in the program using the
name field. You will often find that it makes sense to add a UNIQUE constraint to a
logical key. Since the logical key is how we look up a row from the outside world, it
makes little sense to allow multiple rows with the same value in the table.

A primary key is usually a number that is assigned automatically by the database.
It generally has no meaning outside the program and is only used to link rows from
different tables together. When we want to look up a row in a table, usually search-
ing for the row using the primary key is the fastest way to find the row. Since pri-
mary keys are integer numbers, they take up very little storage and can be com-
pared or sorted very quickly. In our data model, the id field is an example of a
primary key.

A foreign key is usually a number that points to the primary key of an associated row

in a different table. An example of a foreign key in our data model is the from_id.

We are using a naming convention of always calling the primary key field name id and
appending the suffix _id to any field name that is a foreign key.

15.10 Using JOIN to retrieve data

Now that we have followed the rules of database normalization and have data separated
into two tables, linked together using primary and foreign keys, we need to be able to
build a SELECT that reassembles the data across the tables.

SQL uses the JOIN clause to reconnect these tables. In the JOIN clause you specify the
fields that are used to reconnect the rows between the tables.

The following is an example of a SELECT with a JOIN clause:

192 CHAPTER 15. USING DATABASES AND SQL

People Follows
[dTneme e [fromid tod
1s.drchuck 1 _ 5

opencontent
2 Op 1 ~~ 1 3
3 |hawthorn 1 g 4
4 steve coppin 0

from_id [to_id name

drchuck 1 1 2 opencontent
drchuck 1— 1 3 Ihawthorn
drchuck l1——1 4 steve_coppin

Figure 15.5: Connecting Tables Using JOIN

SELECT * FROM Follows JOIN People
ON Follows.from_id = People.id WHERE People.id = 1

The JOIN clause indicates that the fields we are selecting cross both the Follows and
People tables. The ON clause indicates how the two tables are to be joined: Take the rows
from Follows and append the row from People where the field from_id in Follows is
the same the id value in the People table.

The result of the JOIN is to create extra-long “metarows” which have both the fields from
People and the matching fields from Follows. Where there is more than one match
between the id field from People and the from_id from People, then JOIN creates a
metarow for each of the matching pairs of rows, duplicating data as needed.

The following code demonstrates the data that we will have in the database after the multi-
table Twitter spider program (above) has been run several times.

import sqlite3

conn = sqlite3.connect('friends.sqlite')
cur = conn.cursor()

cur.execute('SELECT * FROM People')
count = 0
print('People:')
for row in cur:
if count < 5: print(row)
count = count + 1

15.10. USING JOIN TO RETRIEVE DATA 193

print(count, 'rows.')

cur.execute('SELECT * FROM Follows')
count = 0
print('Follows: ")
for row in cur:
if count < 5: print(row)
count = count + 1
print(count, 'rows.')

cur.execute('''SELECT * FROM Follows JOIN People
ON Follows.to_id = People.id
WHERE Follows.from_id = 2''")
count = 0
print('Connections for id=2:')
for row in cur:
if count < 5: print(row)
count = count + 1
print(count, 'rows.')

cur.close()
Code: http://www.pyde.com/code3/twjoin.py

In this program, we first dump out the People and Follows and then dump out a subset
of the data in the tables joined together.

Here is the output of the program:

python twjoin.py
People:

(1, 'drchuck', 1)

(2, 'opencontent', 1)
(3, 'lhawthorn', 1)
(4, 'steve_coppin', 0)
(5, 'davidkocher', 0)

55 rows.
Follows:
(1, 2)
(1, 3)
(1, 4)
(1, 5)
(1, 6)
60 rows.

Connections for id=2:

(2, 1, 1, 'drchuck', 1)

(2, 28, 28, 'cnxorg', 0)

(2, 30, 30, 'kthanos', 0)

(2, 102, 102, 'SomethingGirl', 0)
(2, 103, 103, 'ja_Pac', 0)

20 rows.

You see the columns from the People and Follows tables and the last set of rows is the

194 CHAPTER 15. USING DATABASES AND SQL

result of the SELECT with the JOIN clause.

In the last select, we are looking for accounts that are friends of “opencontent” (i.e.,
People.id=2).

In each of the “metarows” in the last select, the first two columns are from the Follows
table followed by columns three through five from the People table. You can also see that
the second column (Follows.to_id) matches the third column (People. id) in each of
the joined-up “metarows” .

15.11 Summary

This chapter has covered a lot of ground to give you an overview of the basics of using a
database in Python. Itis more complicated to write the code to use a database to store data
than Python dictionaries or flat files so there is little reason to use a database unless your
application truly needs the capabilities of a database. The situations where a database can
be quite useful are: (1) when your application needs to make small many random updates
within a large data set, (2) when your data is so large it cannot fit in a dictionary and you
need to look up information repeatedly, or (3) when you have a long-running process that
you want to be able to stop and restart and retain the data from one run to the next.

You can build a simple database with a single table to suit many application needs, but
most problems will require several tables and links/relationships between rows in dif-
ferent tables. When you start making links between tables, it is important to do some
thoughtful design and follow the rules of database normalization to make the best use of
the database’ s capabilities. Since the primary motivation for using a database is that
you have a large amount of data to deal with, it is important to model your data efficiently
so your programs run as fast as possible.

15.12 Debugging

One common pattern when you are developing a Python program to connect to an SQLite
database will be to run a Python program and check the results using the Database
Browser for SQLite. The browser allows you to quickly check to see if your program is
working properly.

You must be careful because SQLite takes care to keep two programs from changing the
same data at the same time. For example, if you open a database in the browser and make
a change to the database and have not yet pressed the “save” button in the browser, the
browser “locks” the database file and keeps any other program from accessing the file.
In particular, your Python program will not be able to access the file if it is locked.

So a solution is to make sure to either close the database browser or use the File menu to
close the database in the browser before you attempt to access the database from Python
to avoid the problem of your Python code failing because the database is locked.

15.13. GLOSSARY 195
15.13 Glossary

attribute One of the values within a tuple. More commonly called a “column” or
“field” .

constraint When we tell the database to enforce a rule on a field or a row in a table. A
common constraint is to insist that there can be no duplicate values in a particular
field (i.e., all the values must be unique).

cursor A cursor allows you to execute SQL commands in a database and retrieve data
from the database. A cursor is similar to a socket or file handle for network connec-
tions and files, respectively.

database browser A piece of software that allows you to directly connect to a database
and manipulate the database directly without writing a program.

foreign key A numeric key that points to the primary key of a row in another table. For-
eign keys establish relationships between rows stored in different tables.

index Additional data that the database software maintains as rows and inserts into a
table to make lookups very fast.

logical key Akeythatthe “outsideworld” usestolook up a particular row. For example
in a table of user accounts, a person’ s email address might be a good candidate as
the logical key for the user’ s data.

normalization Designing a data model so that no data is replicated. We store each item
of data at one place in the database and reference it elsewhere using a foreign key.

primary key A numeric key assigned to each row that is used to refer to one row in a
table from another table. Often the database is configured to automatically assign
primary keys as rows are inserted.

relation An area within a database that contains tuples and attributes. More typically
calleda “table” .

tuple A single entry in a database table that is a set of attributes. More typically called

« i

row

196 CHAPTER 15. USING DATABASES AND SQL

Chapter 16

Visualizing data

So far we have been learning the Python language and then learning how to use Python,
the network, and databases to manipulate data.

In this chapter, we take a look at three complete applications that bring all of these things
together to manage and visualize data. You might use these applications as sample code
to help get you started in solving a real-world problem.

Each of the applications is a ZIP file that you can download and extract onto your computer
and execute.

16.1 Building a Google map from geocoded data

In this project, we are using the Google geocoding API to clean up some user-entered
geographic locations of university names and then placing the data on a Google map.

To get started, download the application from:
www.py4e.com/code3/geodata.zip

The first problem to solve is that the free Google geocoding API is rate-limited to a certain
number of requests per day. If you have a lot of data, you might need to stop and restart
the lookup process several times. So we break the problem into two phases.

In the first phase we take our input “survey” data in the file where.data and read it
one line at a time, and retrieve the geocoded information from Google and store it in a
database geodata.sqlite. Before we use the geocoding API for each user-entered location,
we simply check to see if we already have the data for that particular line of input. The
database is functioning as alocal “cache” of our geocoding data to make sure we never
ask Google for the same data twice.

You can restart the process at any time by removing the file geodata.sqlite.

Run the geoload.py program. This program will read the input lines in where.data and
for each line check to see if it is already in the database. If we don’ thave the data for the
location, it will call the geocoding API to retrieve the data and store it in the database.

Here is a sample run after there is already some data in the database:

197

http://www.py4e.com/code3/geodata.zip

198 CHAPTER 16. VISUALIZING DATA

s Sweden

Russia

A4
9w ¢ ;9 -9

Ukrai ~ : At

: ~ Kazakhstan g

ay of Flaac 3 - Mongolia
¢ ' L uzbelualan wamn

Portugal urkey urkmemstan "_

\ Mediterranea Sma China
Tuniely sea ’ ; Alghanman
Morocco Iraq Iran k.
stan

Algena

Irela n.d

Libya Egypt
g - Saudi
Sahara -5 Arbig I M,anma,
. - S p(Gv
Mauritania Mali N
iger
A) Chad Sudan Yemen | T nd. - m_:
-~ Burkins ~ . Gulf of Crefr ij 2l Jlndamnn b L
Guines, . Faso . J’ Aden Sea
[3 m Ll - South - Ethiopia . ngtrr
ok I
Gulf of = Suden - Laccadive M
Guinea = ! /' y ~ ‘Somalia Sea sia
Gaban - -y Kenya. 3 I —
DR Conao * Map data @2013 Geogle, INEGI, MapLink = Terms of Use

Figure 16.1: A Google Map

Found in database Northeastern University

Found in database University of Hong Kong,

Found in database Technion

Found in database Viswakarma Institute, Pune, India
Found in database UMD

Found in database Tufts University

Resolving Monash University

Retrieving http://maps.googleapis.com/maps/api/
geocode/json?sensor=false&address=Monash+University

Retrieved 2063 characters { "results" : [

{'status': 'OK', 'results': ... }

Resolving Kokshetau Institute of Economics and Management

Retrieving http://maps.googleapis.com/maps/api/
geocode/json?sensor=false&address=Kokshetau+Inst ...

Retrieved 1749 characters { "results" : [

{'status': 'OK', 'results': ... }

The first five locations are already in the database and so they are skipped. The program
scans to the point where it finds new locations and starts retrieving them.

The geoload.py program can be stopped at any time, and there is a counter that you
can use to limit the number of calls to the geocoding API for each run. Given that the
where.data only has a few hundred data items, you should not run into the daily rate limit,
but if you had more data it might take several runs over several days to get your database
to have all of the geocoded data for your input.

16.2. VISUALIZING NETWORKS AND INTERCONNECTIONS 199

Once you have some data loaded into geodata.sqlite, you can visualize the data using the
geodump.py program. This program reads the database and writes the file where.js with
the location, latitude, and longitude in the form of executable JavaScript code.

A run of the geodump.py program is as follows:

Northeastern University, ... Boston, MA 02115, USA 42.3396998 -71.08975
Bradley University, 1501 ... Peoria, IL 61625, USA 40.6963857 -89.6160811

Technion, Viazman 87, Kesalsaba, 32000, Israel 32.7775 35.0216667
Monash University Clayton ... VIC 3800, Australia -37.9152113 145.134682
Kokshetau, Kazakhstan 53.2833333 69.3833333

12 records written to where.js
Open where.html to view the data in a browser

The file where.html consists of HTML and JavaScript to visualize a Google map. It reads
the most recent data in where.js to get the data to be visualized. Here is the format of the
where.js file:

myData = [
[42.3396998,-71.08975, 'Northeastern Uni ... Boston, MA 02115'],
[40.6963857,-89.6160811, 'Bradley University, ... Peoria, IL 61625, USA'],

[32.7775,35.0216667, 'Technion, Viazman 87, Kesalsaba, 32000, Israel'],

1;

This is a JavaScript variable that contains a list of lists. The syntax for JavaScript list con-
stants is very similar to Python, so the syntax should be familiar to you.

Simply open where.html in a browser to see the locations. You can hover over each map
pin to find the location that the geocoding API returned for the user-entered input. If
you cannot see any data when you open the where.html file, you might want to check the
JavaScript or developer console for your browser.

16.2 Visualizing networks and interconnections

In this application, we will perform some of the functions of a search engine. We will
first spider a small subset of the web and run a simplified version of the Google page rank
algorithm to determine which pages are most highly connected, and then visualize the
page rank and connectivity of our small corner of the web. We will use the D3 JavaScript
visualization library http://d3js.org/ to produce the visualization output.

You can download and extract this application from:
www.py4e.com/code3/pagerank.zip

The first program (spider.py) program crawls a web site and pulls a series of pages into the
database (spider.sqlite), recording the links between pages. You can restart the process at
any time by removing the spider.sqlite file and rerunning spider.py.

http://d3js.org/
http://www.py4e.com/code3/pagerank.zip

200 CHAPTER 16. VISUALIZING DATA

L]
)
L)
IR .
H.ttp.:.";fw;vw.ar—chu::k.co-mfcsev—_blr:;gf |
® 4 2013/07 /teaching-a-rooc-re-mixable-open-

|online-course
™%\ oA

Figure 16.2: A Page Ranking

Enter web url or enter: http://www.dr-chuck.com/
['http://www.dr-chuck.com']

How many pages:2

1 http://www.dr-chuck.com/ 12

2 http://www.dr-chuck.com/csev-blog/ 57

How many pages:

In this sample run, we told it to crawl a website and retrieve two pages. If you restart
the program and tell it to crawl more pages, it will not re-crawl any pages already in the
database. Upon restart it goes to a random non-crawled page and starts there. So each
successive run of spider.py is additive.

Enter web url or enter: http://www.dr-chuck.com/
['http://www.dr-chuck.com']

How many pages:3

3 http://www.dr-chuck.com/csev-blog 57

4 http://www.dr-chuck.com/dr-chuck/resume/speaking.htm 1
5 http://www.dr-chuck.com/dr-chuck/resume/index.htm 13
How many pages:

You can have multiple starting points in the same database—within the program, these
are called “webs” . The spider chooses randomly amongst all non-visited links across
all the webs as the next page to spider.

If you want to dump the contents of the spider.sqlite file, you can run spdump.py as fol-
lows:

16.2. VISUALIZING NETWORKS AND INTERCONNECTIONS 201

(5, None, 1.0, 3, 'http://www.dr-chuck.com/csev-blog')

(3, None, 1.0, 4, 'http://www.dr-chuck.com/dr-chuck/resume/speaking.htm')
(1, None, 1.0, 2, 'http://www.dr-chuck.com/csev-blog/"')

(1, None, 1.0, 5, 'http://www.dr-chuck.com/dr-chuck/resume/index.htm')

4 rows.

This shows the number of incoming links, the old page rank, the new page rank, the id of
the page, and the url of the page. The spdump.py program only shows pages that have at
least one incoming link to them.

Once you have a few pages in the database, you can run page rank on the pages using the
sprank.py program. You simply tell it how many page rank iterations to run.

How many iterations:2

1 0.546848992536

2 0.226714939664

[(1, 0.559), (2, 0.659), (3, 0.985), (4, 2.135), (5, 0.659)]

You can dump the database again to see that page rank has been updated:

(5, 1.0, 0.985, 3, 'http://www.dr-chuck.com/csev-blog')

(3, 1.0, 2.135, 4, 'http://www.dr-chuck.com/dr-chuck/resume/speaking.htm')
(1, 1.0, 0.659, 2, 'http://www.dr-chuck.com/csev-blog/')

(1, 1.0, 0.659, 5, 'http://www.dr-chuck.com/dr-chuck/resume/index.htm')

4 rows

You can run sprank.py as many times as you like and it will simply refine the page rank
each time you run it. You can even run sprank.py a few times and then go spider a few
more pages sith spider.py and then run sprank.py to reconverge the page rank values. A
search engine usually runs both the crawling and ranking programs all the time.

If you want to restart the page rank calculations without respidering the web pages, you
can use spreset.py and then restart sprank.py.

How many iterations:50

1 0.546848992536

2 0.226714939664

3 0.0659516187242

4 0.0244199333

5 0.0102096489546

6 0.00610244329379
42 0.000109076928206
43 9.91987599002e-05
44 9.02151706798e-05
45 8.20451504471e-05
46 7.46150183837e-05
47 6.7857770908e-05
48 6.17124694224e-05
49 5.61236959327e-05

50 5.10410499467e-05
[(512, 0.0296), (1, 12.79), (2, 28.93), (3, 6.808), (4, 13.46)]

202 CHAPTER 16. VISUALIZING DATA

For each iteration of the page rank algorithm it prints the average change in page rank per
page. The network initially is quite unbalanced and so the individual page rank values
change wildly between iterations. But in a few short iterations, the page rank converges.
You should run sprank.py long enough that the page rank values converge.

If you want to visualize the current top pages in terms of page rank, run spjson.py to read
the database and write the data for the most highly linked pages in JSON format to be
viewed in a web browser.

Creating JSON output on spider.json...
How many nodes? 30
Open force.html in a browser to view the visualization

You can view this data by opening the file force.html in your web browser. This shows
an automatic layout of the nodes and links. You can click and drag any node and you can
also double-click on a node to find the URL that is represented by the node.

If you rerun the other utilities, rerun spjson.py and press refresh in the browser to get the
new data from spider.json.

16.3 Visualizing mail data

Up to this point in the book, you have become quite familiar with our mbox-short.txt and
mbox.txt data files. Now it is time to take our analysis of email data to the next level.

In the real world, sometimes you have to pull down mail data from servers. That might
take quite some time and the data might be inconsistent, error-filled, and need a lot of
cleanup or adjustment. In this section, we work with an application that is the most com-
plex so far and pull down nearly a gigabyte of data and visualize it.

You can download this application from:
www.py4e.com/code3/gmane.zip

We will be using data from a free email list archiving service called www.gmane.org. This
service is very popular with open source projects because it provides a nice searchable
archive of their email activity. They also have a very liberal policy regarding accessing
their data through their API. They have no rate limits, but ask that you don’ t overload
their service and take only the data you need. You can read gmane’ s terms and condi-
tions at this page:

http://gmane.org/export.php

Itis very important that you make use of the gmane.org data responsibly by adding delays
to your access of their services and spreading long-running jobs over a longer period of
time. Do not abuse this free service and ruin it for the rest of us.

When the Sakai email data was spidered using this software, it produced nearly a Giga-
byte of data and took a number of runs on several days. The file README.txt in the above
ZIP may have instructions as to how you can download a pre-spidered copy of the con-
tent.sqlite file for a majority of the Sakai email corpus so you don’ t have to spider for
five days just to run the programs. If you download the pre-spidered content, you should
still run the spidering process to catch up with more recent messages.

http://www.py4e.com/code3/gmane.zip
http://www.gmane.org
http://gmane.org/export.php

16.3. VISUALIZING MAIL DATA 203

conversion
gradehook more
management seruer
ﬂ -_—
g8 = P
= site assi=ulnmem 3
(-]
atlding abeut problems o g 4CCESS
: N
s & = s
g2 when % = Ee
© B = 2 =8
[(-] a =
ini g
wiki) _=
questions. update 35 o ” stats
= e = =
[5-] == =
] - = e
S8 Bissues chat
)1] @ cha
S58 integration _ = llrlllluctmn
test sites 2
(] (-] a
create E."]
& S - message
]

Figure 16.3: A Word Cloud from the Sakai Developer List

The first step is to spider the gmane repository. The base URL is hard-coded in the
gmane.py and is hard-coded to the Sakai developer list. You can spider another reposi-
tory by changing that base url. Make sure to delete the content.sqlite file if you switch
the base url.

The gmane.py file operates as a responsible caching spider in that it runs slowly and re-
trieves one mail message per second so as to avoid getting throttled by gmane. It stores
all of its data in a database and can be interrupted and restarted as often as needed. It
may take many hours to pull all the data down. So you may need to restart several times.

Here is a run of gmane.py retrieving the last five messages of the Sakai developer list:

How many messages:10
http://download.gmane.org/gmane.comp.cms.sakai.devel/51410/51411 9460
nealcaidin@sakaifoundation.org 2013-04-05 re: [building ...
http://download.gmane.org/gmane.comp.cms.sakai.devel/51411/51412 3379
samuelgutierrezjimenez@gmail.com 2013-04-06 re: [building ...
http://download.gmane.org/gmane.comp.cms.sakai.devel/51412/51413 9903
dal@vt.edu 2013-04-05 [building sakai] melete 2.9 oracle ...
http://download.gmane.org/gmane.comp.cms.sakai.devel/51413/51414 349265
m.shedid@elraed-it.com 2013-04-07 [building sakail
http://download.gmane.org/gmane.comp.cms.sakai.devel/51414/51415 3481
samuelgutierrezjimenez@gmail.com 2013-04-07 re:
http://download.gmane.org/gmane.comp.cms.sakai.devel/51415/51416 0

Does not start with From

The program scans content.sqlite from one up to the first message number not already

204 CHAPTER 16. VISUALIZING DATA

spidered and starts spidering at that message. It continues spidering until it has spidered
the desired number of messages or it reaches a page that does not appear to be a properly
formatted message.

Sometimes gmane.org is missing a message. Perhaps administrators can delete messages
or perhaps they get lost. If your spider stops, and it seems it has hit a missing message, go
into the SQLite Manager and add a row with the missing id leaving all the other fields blank
and restart gmane.py. This will unstick the spidering process and allow it to continue.
These empty messages will be ignored in the next phase of the process.

One nice thing is that once you have spidered all of the messages and have them in con-
tent.sglite, you can run gmane.py again to get new messages as they are sent to the list.

The content.sqlite data is pretty raw, with an inefficient data model, and not compressed.
This is intentional as it allows you to look at content.sqlite in the SQLite Manager to debug
problems with the spidering process. It would be a bad idea to run any queries against
this database, as they would be quite slow.

The second process is to run the program gmodel.py. This program reads the raw data
from content.sqlite and produces a cleaned-up and well-modeled version of the data in
the file index.sqlite. This file will be much smaller (often 10X smaller) than content.sqlite
because it also compresses the header and body text.

Each time gmodel.py runs it deletes and rebuilds index.sqlite, allowing you to adjust its
parameters and edit the mapping tables in content.sqlite to tweak the data cleaning pro-
cess. This is a sample run of gmodel.py. It prints a line out each time 250 mail messages
are processed so you can see some progress happening, as this program may run for a
while processing nearly a Gigabyte of mail data.

Loaded allsenders 1588 and mapping 28 dns mapping 1

1 2005-12-08T23:34:30-06:00 ggolden22@mac.com

251 2005-12-22T10:03:20-08:00 tpamsler@ucdavis.edu

501 2006-01-12T11:17:34-05:00 lance@indiana.edu

751 2006-01-24T11:13:28-08:00 vrajgopalanQucmerced.edu

The gmodel.py program handles a number of data cleaning tasks.

Domain names are truncated to two levels for .com, .org, .edu, and .net. Other do-
main names are truncated to three levels. So si.umich.edu becomes umich.edu and
caret.cam.ac.uk becomes cam.ac.uk. Email addresses are also forced to lower case, and
some of the @gmane.org address like the following

arwhyte-63aXycvo3TyHXe+LvDLADg@public.gmane.org

are converted to the real address whenever there is a matching real email address else-
where in the message corpus.

In the content.sqlite database there are two tables that allow you to map both domain
names and individual email addresses that change over the lifetime of the email list. For
example, Steve Githens used the following email addresses as he changed jobs over the
life of the Sakai developer list:

gmane.org

16.3. VISUALIZING MAIL DATA 205

s—-githens@northwestern.edu
sgithens@cam.ac.uk
swgithen@mtu.edu

We can add two entries to the Mapping table in content.sqlite so gmodel.py will map all
three to one address:

s-githens@northwestern.edu -> swgithen@mtu.edu
sgithens@cam.ac.uk -> swgithen@mtu.edu

You can also make similar entries in the DNSMapping table if there are multiple DNS
names you want mapped to a single DNS. The following mapping was added to the Sakai
data:

iupui.edu -> indiana.edu

so all the accounts from the various Indiana University campuses are tracked together.

You can rerun the gmodel.py over and over as you look at the data, and add mappings to
make the data cleaner and cleaner. When you are done, you will have a nicely indexed
version of the email in index.sqlite. This is the file to use to do data analysis. With this
file, data analysis will be really quick.

The first, simplest data analysis is to determine “who sent the most mail?” and “which
organization sent the most mail” ? This is done using gbasic.py:

How many to dump? 5
Loaded messages= 51330 subjects= 25033 senders= 1584

Top 5 Email list participants
steve.swinsburg@gmail.com 2657
azeckoski@unicon.net 1742
ieb@tfd.co.uk 1591
csev@umich.edu 1304
david.horwitz@uct.ac.za 1184

Top 5 Email list organizations
gmail.com 7339

umich.edu 6243

uct.ac.za 2451

indiana.edu 2258

unicon.net 2055

Note how much more quickly gbasic.py runs compared to gmane.py or even gmodel.py.
They are all working on the same data, but ghasic.py is using the compressed and normal-
ized data in index.sqlite. If you have a lot of data to manage, a multistep process like the
one in this application may take a little longer to develop, but will save you a lot of time
when you really start to explore and visualize your data.

You can produce a simple visualization of the word frequency in the subject lines in the
file gword.py:

206

200

150

100

a
t=]

0

CHAPTER 16. VISUALIZING DATA

‘Sakai Developer Email Participation by Organization

B umich.edu

M gmail.com
swinsborg.com

M cam.ac.uk

M uctac.za
M indiana.edu
M unicon.net
M berkeley.edu
[longsight.com
B stanford.edu
I e) /
\«‘ Al ALY \ I\f
I‘ n\"' K\{ "\ ‘
b “ % ‘ lJ"u‘
N MR / \‘. ./ ‘
N ‘A \ \\N.’ 'n\
N v NRASSARL
® AL b P q, N N o ® b o® AL, o
qp(’ qpﬁe 1@“@@ ’:190 QG@S) %D qp“ﬁ -10090 S OQQ qp’\g 10\0 rlﬁ’\g r;p\)\ qp \%0 qp Q:?LQ '7—’?19\’2—’:?’0\’3

Figure 16.4: Sakai Mail Activity by Organization

Range of counts: 33229 129
Output written to gword.js

This produces the file gword.js which you can visualize using gword.htm to produce a
word cloud similar to the one at the beginning of this section.

A second visualization is produced by gline.py. It computes email participation by orga-
nizations over time.

Loaded messages= 51330 subjects= 25033 senders= 1584

Top 10 Oranizations

['gmail.com', 'umich.edu', 'uct.ac.za', 'indiana.edu',
'unicon.net', 'tfd.co.uk', 'berkeley.edu', 'longsight.com',
'stanford.edu', 'ox.ac.uk']

Output written to gline.js

Its output is written to gline.js which is visualized using gline.htm.

This is a relatively complex and sophisticated application and has features to do some real
data retrieval, cleaning, and visualization.

Appendix A

Contributions

A.1 Contributor List for Python for Everybody

Elliott Hauser, Stephen Catto, Sue Blumenberg, Tamara Brunnock, Mihaela Mack, Chris
Kolosiwsky, Dustin Farley, Jens Leerssen, Naveen KT, Mirza Ibrahimovic, Naveen (@toga-
rnk), Zhou Fangyi, Alistair Walsh, Erica Brody, Jih-Sheng Huang, Louis Luangkesorn, and
Michael Fudge

You can see contribution details at:

https://github.com/csev/py4e/graphs/contributors

A.2 Contributor List for Python for Informatics

Bruce Shields for copy editing early drafts, Sarah Hegge, Steven Cherry, Sarah Kathleen
Barbarow, Andrea Parker, Radaphat Chongthammakun, Megan Hixon, Kirby Urner,
Sarah Kathleen Barbrow, Katie Kujala, Noah Botimer, Emily Alinder, Mark Thompson-
Kular, James Perry, Eric Hofer, Eytan Adar, Peter Robinson, Deborah J. Nelson, Jonathan
C. Anthony, Eden Rassette, Jeannette Schroeder, Justin Feezell, Chuangi Li, Gerald
Gordinier, Gavin Thomas Strassel, Ryan Clement, Alissa Talley, Caitlin Holman, Yong-Mi
Kim, Karen Stover, Cherie Edmonds, Maria Seiferle, Romer Kristi D. Aranas (RK), Grant
Boyer, Hedemarrie Dussan,

A.3 Preface for “Think Python”

A.3.1 The strange history of “Think Python”

(Allen B. Downey)

In January 1999 I was preparing to teach an introductory programming class in Java. I
had taught it three times and I was getting frustrated. The failure rate in the class was too
high and, even for students who succeeded, the overall level of achievement was too low.

207

208 APPENDIX A. CONTRIBUTIONS

One of the problems I saw was the books. They were too big, with too much unnecessary
detail about Java, and not enough high-level guidance about how to program. And they
all suffered from the trap door effect: they would start out easy, proceed gradually, and
then somewhere around Chapter 5 the bottom would fall out. The students would get too
much new material, too fast, and I would spend the rest of the semester picking up the
pieces.

Two weeks before the first day of classes, I decided to write my own book. My goals were:

Keep it short. It is better for students to read 10 pages than not read 50 pages.

Be careful with vocabulary. I tried to minimize the jargon and define each term at
first use.

Build gradually. To avoid trap doors, I took the most difficult topics and split them
into a series of small steps.

Focus on programming, not the programming language. I included the minimum
useful subset of Java and left out the rest.

I needed a title, so on a whim I chose How to Think Like a Computer Scientist.

My first version was rough, but it worked. Students did the reading, and they understood
enough that I could spend class time on the hard topics, the interesting topics and (most
important) letting the students practice.

I released the book under the GNU Free Documentation License, which allows users to
copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high school teacher in Virginia,
adopted my book and translated it into Python. He sent me a copy of his translation, and
I had the unusual experience of learning Python by reading my own book.

Jeff and I revised the book, incorporated a case study by Chris Meyers, and in 2001 we
released How to Think Like a Computer Scientist: Learning with Python, also under
the GNU Free Documentation License. As Green Tea Press, I published the book and
started selling hard copies through Amazon.com and college book stores. Other books
from Green Tea Press are available at greenteapress.com.

In 2003 I started teaching at Olin College and I got to teach Python for the first time. The
contrast with Java was striking. Students struggled less, learned more, worked on more
interesting projects, and generally had a lot more fun.

Over the last five years I have continued to develop the book, correcting errors, improving
some of the examples and adding material, especially exercises. In 2008 I started work on
a major revision—at the same time, I was contacted by an editor at Cambridge University
Press who was interested in publishing the next edition. Good timing!

T hope you enjoy working with this book, and that it helps you learn to program and think,
at least a little bit, like a computer scientist.

A.3.2 Acknowledgements for “Think Python”

(Allen B. Downey)

greenteapress.com

A.4. CONTRIBUTOR LIST FOR “THINK PYTHON” 209

First and most importantly, I thank Jeff Elkner, who translated my Java book into Python,
which got this project started and introduced me to what has turned out to be my favorite
language.

I also thank Chris Meyers, who contributed several sections to How to Think Like a Com-
puter Scientist.

And I thank the Free Software Foundation for developing the GNU Free Documentation
License, which helped make my collaboration with Jeff and Chris possible.

I also thank the editors at Lulu who worked on How to Think Like a Computer Scientist.

I thank all the students who worked with earlier versions of this book and all the contrib-
utors (listed in an Appendix) who sent in corrections and suggestions.

And I thank my wife, Lisa, for her work on this book, and Green Tea Press, and everything
else, too.

Allen B. Downey
Needham MA

Allen Downey is an Associate Professor of Computer Science at the Franklin W. Olin Col-
lege of Engineering.

A.4 Contributor List for “Think Python”

(Allen B. Downey)

More than 100 sharp-eyed and thoughtful readers have sent in suggestions and corrections
over the past few years. Their contributions, and enthusiasm for this project, have been
a huge help.

For the detail on the nature of each of the contributions from these individuals, see the
“Think Python” text.

Lloyd Hugh Allen, Yvon Boulianne, Fred Bremmer, Jonah Cohen, Michael Conlon,
Benoit Girard, Courtney Gleason and Katherine Smith, Lee Harr, James Kaylin, David
Kershaw, Eddie Lam, Man-Yong Lee, David Mayo, Chris McAloon, Matthew J. Moelter,
Simon Dicon Montford, John Ouzts, Kevin Parks, David Pool, Michael Schmitt, Robin
Shaw, Paul Sleigh, Craig T. Snydal, Ian Thomas, Keith Verheyden, Peter Winstanley,
Chris Wrobel, Moshe Zadka, Christoph Zwerschke, James Mayer, Hayden McAfee,
Angel Arnal, Tauhidul Hoque and Lex Berezhny, Dr. Michele Alzetta, Andy Mitchell,
Kalin Harvey, Christopher P. Smith, David Hutchins, Gregor Lingl, Julie Peters, Florin
Oprina, D. J. Webre, Ken, Ivo Wever, Curtis Yanko, Ben Logan, Jason Armstrong, Louis
Cordier, Brian Cain, Rob Black, Jean-Philippe Rey at Ecole Centrale Paris, Jason Mader
at George Washington University made a number Jan Gundtofte-Bruun, Abel David and
Alexis Dinno, Charles Thayer, Roger Sperberg, Sam Bull, Andrew Cheung, C. Corey
Capel, Alessandra, Wim Champagne, Douglas Wright, Jared Spindor, Lin Peiheng, Ray
Hagtvedt, Torsten Hiibsch, Inga Petuhhov, Arne Babenhauserheide, Mark E. Casida,
Scott Tyler, Gordon Shephard, Andrew Turner, Adam Hobart, Daryl Hammond and Sarah
Zimmerman, George Sass, Brian Bingham, Leah Engelbert-Fenton, Joe Funke, Chao-
chao Chen, Jeff Paine, Lubos Pintes, Gregg Lind and Abigail Heithoff, Max Hailperin,
Chotipat Pornavalai, Stanislaw Antol, Eric Pashman, Miguel Azevedo, Jianhua Liu, Nick

210 APPENDIX A. CONTRIBUTIONS

King, Martin Zuther, Adam Zimmerman, Ratnakar Tiwari, Anurag Goel, Kelli Kratzer,
Mark Griffiths, Roydan Ongie, Patryk Wolowiec, Mark Chonofsky, Russell Coleman, Wei
Huang, Karen Barber, Nam Nguyen, Stéphane Morin, Fernando Tardio, and Paul Stoop.

Appendix B

Copyright Detail

This work is licensed under a Creative Common Attribution-NonCommercial-ShareAlike
3.0 Unported License. This license is available at

creativecommons.org/licenses/by-nc-sa/3.0/.

I would have preferred to license the book under the less restrictive CC-BY-SA license.
But unfortunately there are a few unscrupulous organizations who search for and find
freely licensed books, and then publish and sell virtually unchanged copies of the books
on a print on demand service such as LuLu or CreateSpace. CreateSpace has (thankfully)
added a policy that gives the wishes of the actual copyright holder preference over a non-
copyright holder attempting to publish a freely licensed work. Unfortunately there are
many print-on-demand services and very few have as well-considered a policy as CreateS-
pace.

Regretfully, I added the NC element to the license this book to give me recourse in case
someone tries to clone this book and sell it commercially. Unfortunately, adding NC lim-
its uses of this material that I would like to permit. So I have added this section of the
document to describe specific situations where I am giving my permission in advance to
use the material in this book in situations that some might consider commercial.

If you are printing a limited number of copies of all or part of this book for use
in a course (e.g., like a coursepack), then you are granted CC-BY license to these
materials for that purpose.

If you are a teacher at a university and you translate this book into a language other
than English and teach using the translated book, then you can contact me and I will
granted you a CC-BY-SA license to these materials with respect to the publication of
your translation. In particular, you will be permitted to sell the resulting translated
book commercially.

If you are intending to translate the book, you may want to contact me so we can make
sure that you have all of the related course materials so you can translate them as well.

Of course, you are welcome to contact me and ask for permission if these clauses are not
sufficient. In all cases, permission to reuse and remix this material will be granted as long
as there is clear added value or benefit to students or teachers that will accrue as a result
of the new work.

211

creativecommons.org/licenses/by-nc-sa/3.0/

212

Charles Severance
www.dr-chuck.com
Ann Arbor, MI, USA
September 9, 2013

APPENDIX B. COPYRIGHT DETAIL

Index

access, 82
accumulator, 54
sum, 52
algorithm, 45
aliasing, 89, 95
copying to avoid, 92
alternative execution, 27
API, 157
key, 153
append method, 84, 90

argument, 35, 39, 41, 42, 45, 90

keyword, 109

list, 90

optional, 63, 87
arithmetic operator, 18
assignment, 81

item, 60, 82, 108

tuple, 110, 116
assignment statement, 16
attribute, 171, 195

BeautifulSoup, 140, 144, 162
binary file, 142
bisection, debugging by, 54
body, 33, 39, 45, 48
boolean expression, 33
boolean operator, 61
bracket

squiggly, 97
bracket operator, 57, 82, 108
branch, 27, 33
break statement, 48
bug, 11
BY-SA, iv

cache, 197

catch, 78

CC-BY-SA, iv

celsius, 30

central processing unit, 11
chained conditional, 27, 33
character, 57

child class, 171
choice function, 38
class, 165, 171

float, 15

int, 15

str, 15
class keyword, 164
close method, 77
colon, 39
comment, 21
comparable, 107, 116
comparison

string, 61

tuple, 108
compile, 11
composition, 42, 45
compound statement, 26, 33
concatenation, 60, 87

list, 83, 90
condition, 26, 33, 48
conditional

chained, 27, 33

nested, 29, 33
conditional executions, 26
conditional statement, 26, 33
connect function, 175
consistency check, 104
constraint, 195
construct, 165
constructor, 167, 171
continue statement, 49
contributors, 209
conversion

type, 36
copy

slice, 59, 84

to avoid aliasing, 92
count method, 63
counter, 54, 60, 66, 72, 99
counting and looping, 60
CPU, 11
Creative Commons License, iv

213

214 INDEX

curl, 143 error
cursor, 195 semantic, 16
cursor function, 175 shape, 115
error message, 16
data structure, 115, 116 evaluate, 18
database, 173 exception
indexes, 173 IndexError, 58, 82
database browser, 195 IOError, 76
database normalization, 195 KeyError, 98
debugging, 23, 32, 44, 65, 78, 91, 104, 115 TypeError, 57, 60, 65, 108
by bisection, 54 ValueError, 21, 111
decorate-sort-undecorate pattern, 109 experimental debugging, 115
decrement, 47, 54 expression, 18
def keyword, 39 boolean, 33
definition extend method, 84
function, 39 eXtensible Markup Language, 157
del operator, 85
deletion, element of list, 85 fahrenheit, 30
delimiter, 87, 95 False ¥#54H, 25
destructor, 167, 171 file, 69
deterministic, 37, 45 open, 69
development plan reading, 72
random walk programming, 115 writing, 77
dict function, 97 file handle, 70
dictionary, 97, 105, 111 filter pattern, 73
looping with, 101 findall, 122
traversal, 112 flag, 66
dir, 166 float function, 36
divisibility, 19 float type, 15
division floating-point division, 18
floating-point, 18 flow control, 137
dot notation, 38, 45, 62 flow of execution, 41, 45, 48
DSU pattern, 109, 116 for loop, 58, 82
for statement, 50
element, 81, 95 foreign key, 195
element deletion, 85 format operator, 64, 66
ElementTree, 145, 157 format sequence, 64, 66
find, 145 format string, 64, 66
findall, 147 Free Documentation License, GNU, 208,
fromstring, 145 209
get, 147 frequency, 99
elif keyword, 28 letter, 117
ellipses, 39 fruitful function, 42, 45
else keyword, 27 function, 39, 45
email address, 111 choice, 38
empty list, 81 connect, 175
empty string, 66, 88 cursor, 175
encapsulation, 60, 163 dict, 97
end of line character, 78 float, 36
equivalence, 89 int, 36

equivalent, 95 len, 58, 98

INDEX

list, 87

log, 38

open, 69, 76

print, 12

randint, 37

random, 37

repr, 78

reversed, 114

sorted, 114

sqrt, 39

str, 36

tuple, 107
function argument, 41
function call, 35, 45

function definition, 39, 40, 45

function object, 40
function parameter, 41
function, fruitful, 42
function, math, 38
function, reasons for, 44

function, trigonometric, 38

function, void, 42

gather, 116
geocoding, 150
get method, 99

GNU Free Documentation License, 208, 209

Google, 150

map, 197

page rank, 199
greedy, 121, 130, 139
greedy matching, 130
grep, 129, 130

guardian pattern, 31, 33, 66

hardware, 2
architecture, 2
hash function, 105
hash table, 98
hashable, 107, 114, 116
hashtable, 105
header, 39, 45
high-level language, 12
histogram, 99, 105
HTML, 140, 162

identical, 95
identity, 89

idiom, 92, 100, 102
if statement, 26
image

jpg, 135

immutability, 60, 66, 90, 107, 114

implementation, 99, 105
import statement, 45

in operator, 61, 82, 98
increment, 47, 54
indentation, 39

index, 57, 66, 82, 95, 97, 195

looping with, 83
negative, 58
slice, 59, 84

starting at zero, 57, 82

IndexError, 58, 82
infinite loop, 48, 54
inheritance, 171

initialization (before update), 47

instance, 165
int function, 36
int type, 15

interactive mode, 5, 12, 17, 43

interpret, 12

invocation, 62, 66

IOError, 76

is operator, 89

item, 66, 81
dictionary, 105

item assignment, 60, 82, 108

item update, 83
items method, 111
iteration, 47, 54

JavaScript Object Notation, 147, 157

join method, 87

jpg, 135
JSON, 147, 157

key, 97, 105

key-value pair, 97, 105, 111

keyboard input, 20
KeyError, 98
keys method, 102
keyword, 16, 17

def, 39

elif, 28

else, 27
keyword argument, 109

language
programming, 4

len function, 58, 98

letter frequency, 117

215

216

list, 81, 87, 95, 114
as argument, 90
concatenation, 83, 90
copy, 84
element, 82
empty, 81
function, 87
index, 82
membership, 82
method, 84
nested, 81, 83
operation, 83
repetition, 83
slice, 84
traversal, 82, 95

list object, 160

log function, 38

logical key, 195

lookup, 105

loop, 48
for, 58, 82
infinite, 48
maximum, 52
minimum, 52
nested, 100, 105
traversal, 58
while, 47

looping
with dictionaries, 101
with indices, 83
with strings, 60

looping and counting, 60

low-level language, 12

machine code, 12
main memory, 12
math function, 38
membership
dictionary, 98
list, 82
set, 98
message, 171
method, 62, 66, 171
append, 84, 90
close, 77
count, 63
extend, 84
get, 99
items, 111
join, 87
keys, 102

pop, 85
remove, 85
sort, 84, 92, 108
split, 87, 111
string, 67
values, 98
void, 85
method, list, 84
mnemonic, 21
module, 38, 45
random, 37
sqlite3, 174
module object, 38
modulus operator, 19

mutability, 60, 82, 84, 90, 107, 114

negative index, 58

nested conditional, 29, 33
nested list, 81, 83, 95
nested loops, 100, 105
newline, 20, 71, 77, 78
non-greedy, 139

None special value, 43, 52, 85

normalization, 195
number, random, 37

OAuth, 153
object, 60, 66, 88, 89, 95, 165
function, 40
object lifecycle, 167
object-oriented, 159
open function, 69, 76
operand, 18
operator
boolean, 61
bracket, 57, 82, 108
del, 85
format, 64, 66
in, 61, 82, 98
is, 89
modulus, 19
slice, 59, 84, 91, 108
string, 19
operator, arithmetic, 18
optional argument, 63, 87
order of operations, 19

parameter, 41, 45, 90

parent class, 171

parentheses
argument in, 35

INDEX

INDEX

empty, 39, 62
overriding precedence, 19
parameters in, 41
regular expression, 125, 139
tuples in, 107
parse, 12
parsing
HTML, 140, 162
parsing HTML, 138
pass statement, 27
pattern
decorate-sort-undecorate, 109
DSU, 109
filter, 73
guardian, 31, 33, 66
search, 67
swap, 110
PEMDAS, 19
persistence, 69
pi, 39
pop method, 85
port, 144
portability, 12
primary key, 195
print function, 12
problem solving, 3, 12
program, 9, 12
programming language, 4
prompt, 12, 20
pseudorandom, 37, 45
Python 2.0, 18, 20
Python 3.0, 18
Pythonic, 77, 78

QA, 76, 78
Quality Assurance, 76, 78
quotation mark, 15, 59

radian, 38
randint function, 37
random function, 37
random module, 37
random number, 37
random walk programming, 115
rate limiting, 151
re module, 119
reference, 90, 95
aliasing, 89
regex, 119
character sets(brackets), 123
findall, 122

parentheses, 125, 139

search, 119

wild card, 120
regular expressions, 119
relation, 195
remove method, 85
repetition

list, 83
repr function, 78
return value, 35, 45
reversed function, 114

Romeo and Juliet, 95, 100, 102, 109, 112

rules of precedence, 19

sanity check, 104
scaffolding, 105
scatter, 116
script, 8
script mode, 17, 43
search pattern, 67
secondary memory, 12, 69
semantic error, 12, 16
semantics, 12
sequence, 57, 67, 81, 87, 107, 114
Service Oriented Architecture, 157
set membership, 98
shape, 116
shape error, 115
short circuit, 31, 33
sine function, 38
singleton, 107, 116
slice, 67

copy, 59, 84

list, 84

string, 59

tuple, 108

update, 84
slice operator, 59, 84, 91, 108
SOA, 157
socket, 144
sort method, 84, 92, 108
sorted function, 114
source code, 12
special value

None, 43, 52, 85
spider, 144
split method, 87, 111
sqlite3 module, 174
sqrt function, 39
squiggly bracket, 97
statement, 17

217

218

assignment, 16
break, 48
compound, 26
conditional, 26, 33
continue, 49
for, 50, 58, 82
if, 26
import, 45
pass, 27
try, 76
while, 47
str function, 36
string, 15, 87, 114
comparison, 61
empty, 88
find, 120
immutable, 60
method, 62
operation, 19
slice, 59
split, 125
startswith, 120
string method, 67
string representation, 78
string type, 15
swap pattern, 110

temperature conversion, 30
text file, 78
time, 137
time.sleep, 137
traceback, 30, 32, 33
traversal, 58, 67, 99, 101, 109
list, 82
traverse
dictionary, 112
trigonometric function, 38
True F7k{H, 25
try statement, 76
tuple, 107, 114, 116, 195
as key in dictionary, 114
assignment, 110
comparison, 108
in brackets, 114
singleton, 107
slice, 108
tuple assignment, 116
tuple function, 107
type, 15, 166
dict, 97
file, 69

list, 81

tuple, 107
type conversion, 36
TypeError, 57, 60, 65, 108
typographical error, 115

underscore character, 17
Unicode, 177
update, 47
item, 83
slice, 84
urllib
image, 135
use before def, 41

value, 15, 88, 89, 105
ValueError, 21, 111
values method, 98
variable, 16
updating, 47
Visualization
map, 197
networks, 199
page rank, 199
void function, 42, 45
void method, 85

web

scraping, 138
web service, 150
while loop, 47
whitespace, 33, 44, 78
wild card, 120, 130

XML, 157
zero, index starting at, 57, 82

HIiz8H, 26
EREE, 19, 23
fleoeek, 24
f4h, 23

18, 24

KgEF, 24
Bidix, 24

XA RNG, BEA, 23
TR, 24

FIFH, 24

T i, 23
M/REA) 25

TI/RFIRK, 25

INDEX

INDEX

BUSHTT, 26
R, 24
BIZH 24
LEERIZHT, 25
TR, 23
TR 24

RERME
False, 25

ki, 24
1i/R, 25
B AEIR, 23
B, 24
THPAEEIR, 23
TR{E, 23
IBREARSELR, 24
IBEXNE, 24
IBHEFF, 24
5,26
5, 26
15, 24
ks, 25
B4R, 25, 26
3k, 26
BENF, 23
BT, 23

WHRIZETR, 25, 26
IR
HY, 23
1E%, 23
1217, 23
HIRER, 23
JEIZHET, 26

219

	为什么要学编程？
	创新与动机
	计算机硬件架构
	理解编程
	词汇与句子
	与Python对话
	术语：解释器与编译器
	编写一个程序
	什么是程序？
	构成程序的小积木
	什么可能会出错？
	学习之旅
	术语表
	习题

	变量、表达式、语句
	值与类型
	变量
	变量名与关键字
	语句
	运算符和运算对象
	表达式
	运算顺序
	模运算
	字符串运算符
	请求用户输入
	注释
	助记变量命名法
	调试
	术语表
	习题

	条件执行
	布尔表达式
	逻辑运算符
	Conditional execution
	Alternative execution
	Chained conditionals
	Nested conditionals
	Catching exceptions using try and except
	Short-circuit evaluation of logical expressions
	Debugging
	Glossary
	Exercises

	Functions
	Function calls
	Built-in functions
	Type conversion functions
	Random numbers
	Math functions
	Adding new functions
	Definitions and uses
	Flow of execution
	Parameters and arguments
	Fruitful functions and void functions
	Why functions?
	Debugging
	Glossary
	Exercises

	Iteration
	Updating variables
	The while statement
	Infinite loops
	``Infinite loops'' and break
	Finishing iterations with continue
	Definite loops using for
	Loop patterns
	Counting and summing loops
	Maximum and minimum loops

	Debugging
	Glossary
	Exercises

	Strings
	A string is a sequence
	Getting the length of a string using len
	Traversal through a string with a loop
	String slices
	Strings are immutable
	Looping and counting
	The in operator
	String comparison
	string methods
	Parsing strings
	Format operator
	Debugging
	Glossary
	Exercises

	Files
	Persistence
	Opening files
	Text files and lines
	Reading files
	Searching through a file
	Letting the user choose the file name
	Using try, except, and open
	Writing files
	Debugging
	Glossary
	Exercises

	Lists
	A list is a sequence
	Lists are mutable
	Traversing a list
	List operations
	List slices
	List methods
	Deleting elements
	Lists and functions
	Lists and strings
	Parsing lines
	Objects and values
	Aliasing
	List arguments
	Debugging
	Glossary
	Exercises

	Dictionaries
	Dictionary as a set of counters
	Dictionaries and files
	Looping and dictionaries
	Advanced text parsing
	Debugging
	Glossary
	Exercises

	Tuples
	Tuples are immutable
	Comparing tuples
	Tuple assignment
	Dictionaries and tuples
	Multiple assignment with dictionaries
	The most common words
	Using tuples as keys in dictionaries
	Sequences: strings, lists, and tuples - Oh My!
	Debugging
	Glossary
	Exercises

	Regular expressions
	Character matching in regular expressions
	Extracting data using regular expressions
	Combining searching and extracting
	Escape character
	Summary
	Bonus section for Unix / Linux users
	Debugging
	Glossary
	Exercises

	Networked programs
	HyperText Transport Protocol - HTTP
	The World's Simplest Web Browser
	Retrieving an image over HTTP
	Retrieving web pages with urllib
	Parsing HTML and scraping the web
	Parsing HTML using regular expressions
	Parsing HTML using BeautifulSoup
	Reading binary files using urllib
	Glossary
	Exercises

	Using Web Services
	eXtensible Markup Language - XML
	Parsing XML
	Looping through nodes
	JavaScript Object Notation - JSON
	Parsing JSON
	Application Programming Interfaces
	Google geocoding web service
	Security and API usage
	Glossary
	Exercises

	Object-Oriented Programming
	Managing Larger Programs
	Getting Started
	Using Objects
	Starting with Programs
	Subdividing a Problem - Encapsulation
	Our First Python Object
	Classes as Types
	Object Lifecycle
	Many Instances
	Inheritance
	Summary
	Glossary

	Using databases and SQL
	What is a database?
	Database concepts
	Database Browser for SQLite
	Creating a database table
	Structured Query Language summary
	Spidering Twitter using a database
	Basic data modeling
	Programming with multiple tables
	Constraints in database tables
	Retrieve and/or insert a record
	Storing the friend relationship

	Three kinds of keys
	Using JOIN to retrieve data
	Summary
	Debugging
	Glossary

	Visualizing data
	Building a Google map from geocoded data
	Visualizing networks and interconnections
	Visualizing mail data

	Contributions
	Contributor List for Python for Everybody
	Contributor List for Python for Informatics
	Preface for ``Think Python''
	The strange history of ``Think Python''
	Acknowledgements for ``Think Python''

	Contributor List for ``Think Python''

	Copyright Detail

