
Python for Informatics

Exploring Information

Version 2.7.3

Charles Severance

Copyright © 2009- Charles Severance.

Printing history:

May 2015: Editorial pass thanks to Sue Blumenberg.

October 2013: Major revision to Chapters 13 and 14 to switch to JSON and use OAuth.
Added new chapter on Visualization.

September 2013:Published book on Amazon CreateSpace

January 2010: Published book using the University of Michigan Espresso Book ma-
chine.

December 2009:Major revision to chapters 2-10 fromThink Python: How to Think Like
a Computer Scientistand writing chapters 1 and 11-15 to producePython for In-
formatics: Exploring Information

June 2008: Major revision, changed title toThink Python: How to Think Like a Com-
puter Scientist.

August 2007: Major revision, changed title toHow to Think Like a (Python) Program-
mer.

April 2002: First edition ofHow to Think Like a Computer Scientist.

This work is licensed under a Creative Common Attribution-NonCommercial-ShareAlike
3.0 Unported License. This license is available atcreativecommons.org/licenses/
by-nc-sa/3.0/ . You can see what the author considers commercial and non-commercial
uses of this material as well as license exemptions in the Appendix titled Copyright Detail.

The LATEX source for theThink Python: How to Think Like a Computer Scientistversion
of this book is available fromhttp://www.thinkpython.com .

Preface

Python for Informatics: Remixing an Open Book

It is quite natural for academics who are continuously told to “publish or perish”
to want to always create something from scratch that is their own fresh creation.
This book is an experiment in not starting from scratch, but instead “remixing”
the book titledThink Python: How to Think Like a Computer Scientistwritten by
Allen B. Downey, Jeff Elkner, and others.

In December of 2009, I was preparing to teachSI502 - Networked Programming
at the University of Michigan for the �fth semester in a row and decided it was time
to write a Python textbook that focused on exploring data instead of understanding
algorithms and abstractions. My goal in SI502 is to teach people lifelong data
handling skills using Python. Few of my students were planning to be professional
computer programmers. Instead, they planned to be librarians, managers,lawyers,
biologists, economists, etc., who happened to want to skillfully use technologyin
their chosen �eld.

I never seemed to �nd the perfect data-oriented Python book for my course, so I
set out to write just such a book. Luckily at a faculty meeting three weeks before
I was about to start my new book from scratch over the holiday break, Dr. Atul
Prakash showed me theThink Pythonbook which he had used to teach his Python
course that semester. It is a well-written Computer Science text with a focus on
short, direct explanations and ease of learning.

The overall book structure has been changed to get to doing data analysis problems
as quickly as possible and have a series of running examples and exercises about
data analysis from the very beginning.

Chapters 2–10 are similar to theThink Pythonbook, but there have been major
changes. Number-oriented examples and exercises have been replaced with data-
oriented exercises. Topics are presented in the order needed to build increasingly
sophisticated data analysis solutions. Some topics liketry andexcept are pulled
forward and presented as part of the chapter on conditionals. Functions are given
very light treatment until they are needed to handle program complexity rather
than introduced as an early lesson in abstraction. Nearly all user-de�ned functions

iv Chapter 0. Preface

have been removed from the example code and exercises outside of Chapter 4.
The word “recursion”1 does not appear in the book at all.

In chapters 1 and 11–16, all of the material is brand new, focusing on real-world
uses and simple examples of Python for data analysis including regular expres-
sions for searching and parsing, automating tasks on your computer, retrieving
data across the network, scraping web pages for data, using web services, parsing
XML and JSON data, and creating and using databases using Structured Query
Language.

The ultimate goal of all of these changes is a shift from a Computer Science toan
Informatics focus is to only include topics into a �rst technology class that can be
useful even if one chooses not to become a professional programmer.

Students who �nd this book interesting and want to further explore should look
at Allen B. Downey'sThink Pythonbook. Because there is a lot of overlap be-
tween the two books, students will quickly pick up skills in the additional areas of
technical programming and algorithmic thinking that are covered inThink Python.
And given that the books have a similar writing style, they should be able to move
quickly throughThink Pythonwith a minimum of effort.

As the copyright holder ofThink Python, Allen has given me permission to change
the book's license on the material from his book that remains in this book fromthe
GNU Free Documentation License to the more recent Creative Commons Attri-
bution — Share Alike license. This follows a general shift in open documentation
licenses moving from the GFDL to the CC-BY-SA (e.g., Wikipedia). Using the
CC-BY-SA license maintains the book's strong copyleft tradition while making it
even more straightforward for new authors to reuse this material as they see �t.

I feel that this book serves an example of why open materials are so important
to the future of education, and want to thank Allen B. Downey and Cambridge
University Press for their forward-looking decision to make the book available
under an open copyright. I hope they are pleased with the results of my efforts and
I hope that you the reader are pleased withour collective efforts.

I would like to thank Allen B. Downey and Lauren Cowles for their help, patience,
and guidance in dealing with and resolving the copyright issues around thisbook.

Charles Severance
www.dr-chuck.com
Ann Arbor, MI, USA
September 9, 2013

Charles Severance is a Clinical Associate Professor at the University of Michigan
School of Information.

1Except, of course, for this line.

Contents

Preface iii

1 Why should you learn to write programs? 1

1.1 Creativity and motivation . 2

1.2 Computer hardware architecture 3

1.3 Understanding programming 4

1.4 Words and sentences . 5

1.5 Conversing with Python . 6

1.6 Terminology: interpreter and compiler 8

1.7 Writing a program . 10

1.8 What is a program? . 11

1.9 The building blocks of programs 12

1.10 What could possibly go wrong? 13

1.11 The learning journey . 14

1.12 Glossary . 15

1.13 Exercises . 16

2 Variables, expressions, and statements 19

2.1 Values and types . 19

2.2 Variables . 20

2.3 Variable names and keywords 21

2.4 Statements . 21

vi Contents

2.5 Operators and operands . 22

2.6 Expressions . 23

2.7 Order of operations . 23

2.8 Modulus operator . 24

2.9 String operations . 24

2.10 Asking the user for input . 24

2.11 Comments . 25

2.12 Choosing mnemonic variable names 26

2.13 Debugging . 28

2.14 Glossary . 28

2.15 Exercises . 30

3 Conditional execution 31

3.1 Boolean expressions . 31

3.2 Logical operators . 32

3.3 Conditional execution . 32

3.4 Alternative execution . 33

3.5 Chained conditionals . 34

3.6 Nested conditionals . 35

3.7 Catching exceptions using try and except 36

3.8 Short-circuit evaluation of logical expressions 37

3.9 Debugging . 38

3.10 Glossary . 39

3.11 Exercises . 40

4 Functions 43

4.1 Function calls . 43

4.2 Built-in functions . 43

4.3 Type conversion functions . 44

4.4 Random numbers . 45

Contents vii

4.5 Math functions . 46

4.6 Adding new functions . 47

4.7 De�nitions and uses . 48

4.8 Flow of execution . 49

4.9 Parameters and arguments . 49

4.10 Fruitful functions and void functions 50

4.11 Why functions? . 52

4.12 Debugging . 52

4.13 Glossary . 53

4.14 Exercises . 54

5 Iteration 57

5.1 Updating variables . 57

5.2 Thewhile statement . 57

5.3 In�nite loops . 58

5.4 “In�nite loops” andbreak . 58

5.5 Finishing iterations withcontinue 59

5.6 De�nite loops usingfor . 60

5.7 Loop patterns . 61

5.8 Debugging . 64

5.9 Glossary . 64

5.10 Exercises . 65

6 Strings 67

6.1 A string is a sequence . 67

6.2 Getting the length of a string usinglen 68

6.3 Traversal through a string with a loop 68

6.4 String slices . 69

6.5 Strings are immutable . 69

6.6 Looping and counting . 70

viii Contents

6.7 Thein operator . 70

6.8 String comparison . 70

6.9 string methods . 71

6.10 Parsing strings . 73

6.11 Format operator . 74

6.12 Debugging . 75

6.13 Glossary . 76

6.14 Exercises . 77

7 Files 79

7.1 Persistence . 79

7.2 Opening �les . 80

7.3 Text �les and lines . 81

7.4 Reading �les . 82

7.5 Searching through a �le . 83

7.6 Letting the user choose the �le name 85

7.7 Usingtry, except, andopen 85

7.8 Writing �les . 87

7.9 Debugging . 87

7.10 Glossary . 88

7.11 Exercises . 88

8 Lists 91

8.1 A list is a sequence . 91

8.2 Lists are mutable . 91

8.3 Traversing a list . 92

8.4 List operations . 93

8.5 List slices . 93

8.6 List methods . 94

8.7 Deleting elements . 94

Contents ix

8.8 Lists and functions . 95

8.9 Lists and strings . 96

8.10 Parsing lines . 97

8.11 Objects and values . 98

8.12 Aliasing . 99

8.13 List arguments . 100

8.14 Debugging . 101

8.15 Glossary . 104

8.16 Exercises . 105

9 Dictionaries 107

9.1 Dictionary as a set of counters 109

9.2 Dictionaries and �les . 110

9.3 Looping and dictionaries . 111

9.4 Advanced text parsing . 112

9.5 Debugging . 114

9.6 Glossary . 115

9.7 Exercises . 115

10 Tuples 117

10.1 Tuples are immutable . 117

10.2 Comparing tuples . 118

10.3 Tuple assignment . 119

10.4 Dictionaries and tuples . 121

10.5 Multiple assignment with dictionaries 121

10.6 The most common words . 122

10.7 Using tuples as keys in dictionaries 124

10.8 Sequences: strings, lists, and tuples—Oh My! 124

10.9 Debugging . 125

10.10 Glossary . 126

10.11 Exercises . 127

x Contents

11 Regular expressions 129

11.1 Character matching in regular expressions 130

11.2 Extracting data using regular expressions 131

11.3 Combining searching and extracting 133

11.4 Escape character . 137

11.5 Summary . 137

11.6 Bonus section for Unix users 138

11.7 Debugging . 139

11.8 Glossary . 140

11.9 Exercises . 140

12 Networked programs 143

12.1 HyperText Transport Protocol - HTTP 143

12.2 The World's Simplest Web Browser 144

12.3 Retrieving an image over HTTP 145

12.4 Retrieving web pages withurllib 148

12.5 Parsing HTML and scraping the web 148

12.6 Parsing HTML using regular expressions 149

12.7 Parsing HTML using BeautifulSoup 150

12.8 Reading binary �les using urllib 152

12.9 Glossary . 153

12.10 Exercises . 153

13 Using Web Services 155

13.1 eXtensible Markup Language - XML 155

13.2 Parsing XML . 156

13.3 Looping through nodes . 156

13.4 JavaScript Object Notation - JSON 157

13.5 Parsing JSON . 158

13.6 Application Programming Interfaces 159

Contents xi

13.7 Google geocoding web service 160

13.8 Security and API usage . 162

13.9 Glossary . 166

13.10 Exercises . 167

14 Using databases and Structured Query Language (SQL) 169

14.1 What is a database? . 169

14.2 Database concepts . 170

14.3 SQLite manager Firefox add-on 170

14.4 Creating a database table . 170

14.5 Structured Query Language summary 173

14.6 Spidering Twitter using a database 175

14.7 Basic data modeling . 180

14.8 Programming with multiple tables 182

14.9 Three kinds of keys . 186

14.10 Using JOIN to retrieve data . 187

14.11 Summary . 189

14.12 Debugging . 189

14.13 Glossary . 190

15 Visualizing data 193

15.1 Building a Google map from geocoded data 193

15.2 Visualizing networks and interconnections 195

15.3 Visualizing mail data . 198

16 Automating common tasks on your computer 203

16.1 File names and paths . 203

16.2 Example: Cleaning up a photo directory 204

16.3 Command-line arguments . 209

16.4 Pipes . 210

16.5 Glossary . 211

16.6 Exercises . 212

xii Contents

A Python Programming on Windows 215

B Python Programming on Macintosh 217

C Contributions 219

D Copyright Detail 223

Chapter 1

Why should you learn to write
programs?

Writing programs (or programming) is a very creative and rewarding activity. You
can write programs for many reasons, ranging from making your living to solving
a dif�cult data analysis problem to having fun to helping someone else solve a
problem. This book assumes thateveryoneneeds to know how to program, and
that once you know how to program you will �gure out what you want to do with
your newfound skills.

We are surrounded in our daily lives with computers ranging from laptops to cell
phones. We can think of these computers as our “personal assistants” who can take
care of many things on our behalf. The hardware in our current-day computers is
essentially built to continuously ask us the question, “What would you like me to
do next?”

PDA

Next?
What

Next?
What

Next?
What

Next?
What

Next?
What

Next?
What

Programmers add an operating system and a set of applications to the hardware
and we end up with a Personal Digital Assistant that is quite helpful and capable
of helping us do many different things.

Our computers are fast and have vast amounts of memory and could be very help-
ful to us if we only knew the language to speak to explain to the computer what we
would like it to “do next”. If we knew this language, we could tell the computer
to do tasks on our behalf that were repetitive. Interestingly, the kinds of things
computers can do best are often the kinds of things that we humans �nd boring
and mind-numbing.

2 Chapter 1. Why should you learn to write programs?

For example, look at the �rst three paragraphs of this chapter and tell me the most
commonly used word and how many times the word is used. While you were
able to read and understand the words in a few seconds, counting them is almost
painful because it is not the kind of problem that human minds are designedto
solve. For a computer the opposite is true, reading and understanding textfrom a
piece of paper is hard for a computer to do but counting the words and tellingyou
how many times the most used word was used is very easy for the computer:

python words.py
Enter file:words.txt
to 16

Our “personal information analysis assistant” quickly told us that the word “to”
was used sixteen times in the �rst three paragraphs of this chapter.

This very fact that computers are good at things that humans are not is why you
need to become skilled at talking “computer language”. Once you learn this new
language, you can delegate mundane tasks to your partner (the computer), leaving
more time for you to do the things that you are uniquely suited for. You bring
creativity, intuition, and inventiveness to this partnership.

1.1 Creativity and motivation

While this book is not intended for professional programmers, professional pro-
gramming can be a very rewarding job both �nancially and personally. Building
useful, elegant, and clever programs for others to use is a very creative activity.
Your computer or Personal Digital Assistant (PDA) usually contains many differ-
ent programs from many different groups of programmers, each competing for
your attention and interest. They try their best to meet your needs and giveyou a
great user experience in the process. In some situations, when you choose a piece
of software, the programmers are directly compensated because of yourchoice.

If we think of programs as the creative output of groups of programmers, perhaps
the following �gure is a more sensible version of our PDA:

Me! PDA

Me!
Pick Pick Pick

BuyPickPick
Me!

Me!

Me :)

Me!

For now, our primary motivation is not to make money or please end users, but
instead for us to be more productive in handling the data and information that we
will encounter in our lives. When you �rst start, you will be both the programmer
and the end user of your programs. As you gain skill as a programmer andpro-
gramming feels more creative to you, your thoughts may turn toward developing
programs for others.

1.2. Computer hardware architecture 3

1.2 Computer hardware architecture

Before we start learning the language we speak to give instructions to computers
to develop software, we need to learn a small amount about how computers are
built. If you were to take apart your computer or cell phone and look deepinside,
you would �nd the following parts:

Next?

Network
Input

Software

Output
Devices

What

Central
Processing
Unit

Main
Memory Secondary

Memory

The high-level de�nitions of these parts are as follows:

• TheCentral Processing Unit(or CPU) is the part of the computer that is
built to be obsessed with “what is next?” If your computer is rated at 3.0
Gigahertz, it means that the CPU will ask “What next?” three billion times
per second. You are going to have to learn how to talk fast to keep up with
the CPU.

• The Main Memory is used to store information that the CPU needs in a
hurry. The main memory is nearly as fast as the CPU. But the information
stored in the main memory vanishes when the computer is turned off.

• The Secondary Memoryis also used to store information, but it is much
slower than the main memory. The advantage of the secondary memory is
that it can store information even when there is no power to the computer.
Examples of secondary memory are disk drives or �ash memory (typically
found in USB sticks and portable music players).

• The Input and Output Devices are simply our screen, keyboard, mouse,
microphone, speaker, touchpad, etc. They are all of the ways we interact
with the computer.

• These days, most computers also have aNetwork Connection to retrieve
information over a network. We can think of the network as a very slow
place to store and retrieve data that might not always be “up”. So in a sense,
the network is a slower and at times unreliable form ofSecondary Memory.

4 Chapter 1. Why should you learn to write programs?

While most of the detail of how these components work is best left to computer
builders, it helps to have some terminology so we can talk about these different
parts as we write our programs.

As a programmer, your job is to use and orchestrate each of these resources to
solve the problem that you need to solve and analyze the data you get fromthe
solution. As a programmer you will mostly be “talking” to the CPU and telling
it what to do next. Sometimes you will tell the CPU to use the main memory,
secondary memory, network, or the input/output devices.

You

Input

Software

Output
Devices

What
Next?

Central
Processing
Unit

Main
Memory Secondary

Memory

Network

You need to be the person who answers the CPU's “What next?” question. But it
would be very uncomfortable to shrink you down to 5mm tall and insert you into
the computer just so you could issue a command three billion times per second. So
instead, you must write down your instructions in advance. We call these stored
instructions aprogram and the act of writing these instructions down and getting
the instructions to be correctprogramming.

1.3 Understanding programming

In the rest of this book, we will try to turn you into a person who is skilled
in the art of programming. In the end you will be aprogrammer — perhaps
not a professional programmer, but at least you will have the skills to lookat a
data/information analysis problem and develop a program to solve the problem.

In a sense, you need two skills to be a programmer:

• First, you need to know the programming language (Python) - you need
to know the vocabulary and the grammar. You need to be able to spell
the words in this new language properly and know how to construct well-
formed “sentences” in this new language.

1.4. Words and sentences 5

• Second, you need to “tell a story”. In writing a story, you combine words
and sentences to convey an idea to the reader. There is a skill and art in
constructing the story, and skill in story writing is improved by doing some
writing and getting some feedback. In programming, our program is the
“story” and the problem you are trying to solve is the “idea”.

Once you learn one programming language such as Python, you will �nd it much
easier to learn a second programming language such as JavaScript or C++. The
new programming language has very different vocabulary and grammar but the
problem-solving skills will be the same across all programming languages.

You will learn the “vocabulary” and “sentences” of Python pretty quickly. It will
take longer for you to be able to write a coherent program to solve a brand-new
problem. We teach programming much like we teach writing. We start reading
and explaining programs, then we write simple programs, and then we write in-
creasingly complex programs over time. At some point you “get your muse” and
see the patterns on your own and can see more naturally how to take a problem
and write a program that solves that problem. And once you get to that point,
programming becomes a very pleasant and creative process.

We start with the vocabulary and structure of Python programs. Be patientas the
simple examples remind you of when you started reading for the �rst time.

1.4 Words and sentences

Unlike human languages, the Python vocabulary is actually pretty small. We call
this “vocabulary” the “reserved words”. These are words that havevery special
meaning to Python. When Python sees these words in a Python program, they
have one and only one meaning to Python. Later as you write programs you will
make up your own words that have meaning to you calledvariables. You will
have great latitude in choosing your names for your variables, but you cannot use
any of Python's reserved words as a name for a variable.

When we train a dog, we use special words like “sit”, “stay”, and “fetch”. When
you talk to a dog and don't use any of the reserved words, they just lookat you with
a quizzical look on their face until you say a reserved word. For example, if you
say, “I wish more people would walk to improve their overall health”, what most
dogs likely hear is, “blah blah blahwalk blah blah blah blah.” That is because
“walk” is a reserved word in dog language. Many might suggest that the language
between humans and cats has no reserved words1.

The reserved words in the language where humans talk to Python include the
following:

1http://xkcd.com/231/

6 Chapter 1. Why should you learn to write programs?

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

That is it, and unlike a dog, Python is already completely trained. When you say
“try”, Python will try every time you say it without fail.

We will learn these reserved words and how they are used in good time, butfor
now we will focus on the Python equivalent of “speak” (in human-to-doglan-
guage). The nice thing about telling Python to speak is that we can even tell it
what to say by giving it a message in quotes:

print � Hello world! �

And we have even written our �rst syntactically correct Python sentence. Our
sentence starts with the reserved wordprint followed by a string of text of our
choosing enclosed in single quotes.

1.5 Conversing with Python

Now that we have a word and a simple sentence that we know in Python, we need
to know how to start a conversation with Python to test our new language skills.

Before you can converse with Python, you must �rst install the Python software on
your computer and learn how to start Python on your computer. That is too much
detail for this chapter so I suggest that you consultwww.pythonlearn.com where
I have detailed instructions and screencasts of setting up and starting Python on
Macintosh and Windows systems. At some point, you will be in a terminal or
command window and you will typepython and the Python interpreter will start
executing in interactive mode and appear somewhat as follows:

Python 2.6.1 (r261:67515, Jun 24 2010, 21:47:49)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more i nformation.
>>>

The>>> prompt is the Python interpreter's way of asking you, “What do you want
me to do next?” Python is ready to have a conversation with you. All you haveto
know is how to speak the Python language.

Let's say for example that you did not know even the simplest Python language
words or sentences. You might want to use the standard line that astronauts use
when they land on a faraway planet and try to speak with the inhabitants of the
planet:

1.5. Conversing with Python 7

>>> I come in peace, please take me to your leader
File "<stdin>", line 1

I come in peace, please take me to your leader
ˆ

SyntaxError: invalid syntax
>>>

This is not going so well. Unless you think of something quickly, the inhabitants
of the planet are likely to stab you with their spears, put you on a spit, roastyou
over a �re, and eat you for dinner.

Luckily you brought a copy of this book on your travels, and you thumb to this
very page and try again:

>>> print � Hello world! �
Hello world!

This is looking much better, so you try to communicate some more:

>>> print � You must be the legendary god that comes from the sky �
You must be the legendary god that comes from the sky
>>> print � We have been waiting for you for a long time �
We have been waiting for you for a long time
>>> print � Our legend says you will be very tasty with mustard �
Our legend says you will be very tasty with mustard
>>> print � We will have a feast tonight unless you say

File "<stdin>", line 1
print � We will have a feast tonight unless you say

ˆ
SyntaxError: EOL while scanning string literal
>>>

The conversation was going so well for a while and then you made the tiniest
mistake using the Python language and Python brought the spears back out.

At this point, you should also realize that while Python is amazingly complex and
powerful and very picky about the syntax you use to communicate with it, Python
is not intelligent. You are really just having a conversation with yourself, but using
proper syntax.

In a sense, when you use a program written by someone else the conversation is
between you and those other programmers with Python acting as an intermediary.
Python is a way for the creators of programs to express how the conversation is
supposed to proceed. And in just a few more chapters, you will be one ofthose
programmers using Python to talk to the users of your program.

Before we leave our �rst conversation with the Python interpreter, you should
probably know the proper way to say “good-bye” when interacting with thein-
habitants of Planet Python:

>>> good-bye
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

8 Chapter 1. Why should you learn to write programs?

NameError: name � good � is not defined

>>> if you don � t mind, I need to leave
File "<stdin>", line 1

if you don � t mind, I need to leave
ˆ

SyntaxError: invalid syntax

>>> quit()

You will notice that the error is different for the �rst two incorrect attempts. The
second error is different becauseif is a reserved word and Python saw the reserved
word and thought we were trying to say something but got the syntax of the sen-
tence wrong.

The proper way to say “good-bye” to Python is to enterquit() at the interactive
chevron>>> prompt. It would have probably taken you quite a while to guess that
one, so having a book handy probably will turn out to be helpful.

1.6 Terminology: interpreter and compiler

Python is ahigh-level language intended to be relatively straightforward for hu-
mans to read and write and for computers to read and process. Other high-level
languages include Java, C++, PHP, Ruby, Basic, Perl, JavaScript, and many more.
The actual hardware inside the Central Processing Unit (CPU) does not understand
any of these high-level languages.

The CPU understands a language we callmachine language. Machine language
is very simple and frankly very tiresome to write because it is represented allin
zeros and ones:

01010001110100100101010000001111
11100110000011101010010101101101
...

Machine language seems quite simple on the surface, given that there are only ze-
ros and ones, but its syntax is even more complex and far more intricate than
Python. So very few programmers ever write machine language. Instead we
build various translators to allow programmers to write in high-level languages
like Python or JavaScript and these translators convert the programs to machine
language for actual execution by the CPU.

Since machine language is tied to the computer hardware, machine language is not
portable across different types of hardware. Programs written in high-level lan-
guages can be moved between different computers by using a differentinterpreter
on the new machine or recompiling the code to create a machine language version
of the program for the new machine.

These programming language translators fall into two general categories:(1) in-
terpreters and (2) compilers.

1.6. Terminology: interpreter and compiler 9

An interpreter reads the source code of the program as written by the program-
mer, parses the source code, and interprets the instructions on the �y. Python is
an interpreter and when we are running Python interactively, we can typea line
of Python (a sentence) and Python processes it immediately and is ready for us to
type another line of Python.

Some of the lines of Python tell Python that you want it to remember some value
for later. We need to pick a name for that value to be remembered and we can use
that symbolic name to retrieve the value later. We use the termvariable to refer
to the labels we use to refer to this stored data.

>>> x = 6
>>> print x
6
>>> y = x * 7
>>> print y
42
>>>

In this example, we ask Python to remember the value six and use the labelx so
we can retrieve the value later. We verify that Python has actually remembered
the value usingprint . Then we ask Python to retrievex and multiply it by seven
and put the newly computed value iny. Then we ask Python to print out the value
currently iny.

Even though we are typing these commands into Python one line at a time, Python
is treating them as an ordered sequence of statements with later statements able
to retrieve data created in earlier statements. We are writing our �rst simple para-
graph with four sentences in a logical and meaningful order.

It is the nature of aninterpreter to be able to have an interactive conversation
as shown above. Acompiler needs to be handed the entire program in a �le,
and then it runs a process to translate the high-level source code into machine
language and then the compiler puts the resulting machine language into a �le for
later execution.

If you have a Windows system, often these executable machine language programs
have a suf�x of “.exe” or “.dll” which stand for “executable” and “dynamic link
library” respectively. In Linux and Macintosh, there is no suf�x that uniquely
marks a �le as executable.

If you were to open an executable �le in a text editor, it would look completely
crazy and be unreadable:

ˆ?ELFˆAˆAˆAˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆBˆ@ˆCˆ@ˆAˆ@ˆ@ˆ@\xa0\x 82
ˆDˆH4ˆ@ˆ@ˆ@\x90ˆ]ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@4ˆ@ ˆ@ˆGˆ@(ˆ@$ˆ@!ˆ@ˆFˆ@
ˆ@ˆ@4ˆ@ˆ@ˆ@4\x80ˆDˆH4\x80ˆDˆH\xe0ˆ@ˆ@ˆ@\xe0ˆ@ˆ@ˆ@ˆE
ˆ@ˆ@ˆ@ˆDˆ@ˆ@ˆ@ˆCˆ@ˆ@ˆ@ˆTˆAˆ@ˆ@ˆT\x81ˆDˆHˆT\x81ˆDˆHˆ S
ˆ@ˆ@ˆ@ˆSˆ@ˆ@ˆ@ˆDˆ@ˆ@ˆ@ˆAˆ@ˆ@ˆ@ˆA\ˆDˆHQVhT\x83ˆDˆH\x e8
....

10 Chapter 1. Why should you learn to write programs?

It is not easy to read or write machine language, so it is nice that we haveinter-
preters andcompilers that allow us to write in high-level languages like Python
or C.

Now at this point in our discussion of compilers and interpreters, you should be
wondering a bit about the Python interpreter itself. What language is it written
in? Is it written in a compiled language? When we type “python”, what exactly is
happening?

The Python interpreter is written in a high-level language called “C”. You can look
at the actual source code for the Python interpreter by going towww.python.org
and working your way to their source code. So Python is a program itself and it
is compiled into machine code. When you installed Python on your computer (or
the vendor installed it), you copied a machine-code copy of the translated Python
program onto your system. In Windows, the executable machine code for Python
itself is likely in a �le with a name like:

C:\Python27\python.exe

That is more than you really need to know to be a Python programmer, but some-
times it pays to answer those little nagging questions right at the beginning.

1.7 Writing a program

Typing commands into the Python interpreter is a great way to experiment with
Python's features, but it is not recommended for solving more complex problems.

When we want to write a program, we use a text editor to write the Python in-
structions into a �le, which is called ascript. By convention, Python scripts have
names that end with.py .

To execute the script, you have to tell the Python interpreter the name of the �le.
In a Unix or Windows command window, you would typepython hello.py as
follows:

csev$ cat hello.py
print � Hello world! �
csev$ python hello.py
Hello world!
csev$

The “csev$” is the operating system prompt, and the “cat hello.py” is showing us
that the �le “hello.py” has a one-line Python program to print a string.

We call the Python interpreter and tell it to read its source code from the �le
“hello.py” instead of prompting us for lines of Python code interactively.

You will notice that there was no need to havequit() at the end of the Python
program in the �le. When Python is reading your source code from a �le,it knows
to stop when it reaches the end of the �le.

1.8. What is a program? 11

1.8 What is a program?

The de�nition of aprogram at its most basic is a sequence of Python statements
that have been crafted to do something. Even our simplehello.py script is a pro-
gram. It is a one-line program and is not particularly useful, but in the strictest
de�nition, it is a Python program.

It might be easiest to understand what a program is by thinking about a problem
that a program might be built to solve, and then looking at a program that would
solve that problem.

Lets say you are doing Social Computing research on Facebook posts and you are
interested in the most frequently used word in a series of posts. You could print out
the stream of Facebook posts and pore over the text looking for the most common
word, but that would take a long time and be very mistake prone. You would be
smart to write a Python program to handle the task quickly and accurately so you
can spend the weekend doing something fun.

For example, look at the following text about a clown and a car. Look at thetext
and �gure out the most common word and how many times it occurs.

the clown ran after the car and the car ran into the tent
and the tent fell down on the clown and the car

Then imagine that you are doing this task looking at millions of lines of text.
Frankly it would be quicker for you to learn Python and write a Python program
to count the words than it would be to manually scan the words.

The even better news is that I already came up with a simple program to �nd the
most common word in a text �le. I wrote it, tested it, and now I am giving it to
you to use so you can save some time.

name = raw_input(� Enter file: �)
handle = open(name, � r �)
text = handle.read()
words = text.split()
counts = dict()

for word in words:
counts[word] = counts.get(word,0) + 1

bigcount = None
bigword = None
for word,count in counts.items():

if bigcount is None or count > bigcount:
bigword = word
bigcount = count

print bigword, bigcount

You don't even need to know Python to use this program. You will need to get
through Chapter 10 of this book to fully understand the awesome Python tech-
niques that were used to make the program. You are the end user, you simplyuse

12 Chapter 1. Why should you learn to write programs?

the program and marvel at its cleverness and how it saved you so much manual
effort. You simply type the code into a �le calledwords.py and run it or you
download the source code fromhttp://www.pythonlearn.com/code/ and run
it.

This is a good example of how Python and the Python language are acting as an
intermediary between you (the end user) and me (the programmer). Python isa
way for us to exchange useful instruction sequences (i.e., programs) ina common
language that can be used by anyone who installs Python on their computer.So
neither of us are talkingto Python, instead we are communicating with each other
throughPython.

1.9 The building blocks of programs

In the next few chapters, we will learn more about the vocabulary, sentence struc-
ture, paragraph structure, and story structure of Python. We will learnabout the
powerful capabilities of Python and how to compose those capabilities together to
create useful programs.

There are some low-level conceptual patterns that we use to construct programs.
These constructs are not just for Python programs, they are part of every program-
ming language from machine language up to the high-level languages.

input: Get data from the “outside world”. This might be reading data from a
�le, or even some kind of sensor like a microphone or GPS. In our initial
programs, our input will come from the user typing data on the keyboard.

output: Display the results of the program on a screen or store them in a �le or
perhaps write them to a device like a speaker to play music or speak text.

sequential execution:Perform statements one after another in the order they are
encountered in the script.

conditional execution: Check for certain conditions and then execute or skip a
sequence of statements.

repeated execution:Perform some set of statements repeatedly, usually with
some variation.

reuse: Write a set of instructions once and give them a name and then reuse those
instructions as needed throughout your program.

It sounds almost too simple to be true, and of course it is never so simple. It islike
saying that walking is simply “putting one foot in front of the other”. The “art” of
writing a program is composing and weaving these basic elements together many
times over to produce something that is useful to its users.

The word counting program above directly uses all of these patterns except for
one.

1.10. What could possibly go wrong? 13

1.10 What could possibly go wrong?

As we saw in our earliest conversations with Python, we must communicate very
precisely when we write Python code. The smallest deviation or mistake will
cause Python to give up looking at your program.

Beginning programmers often take the fact that Python leaves no room forerrors
as evidence that Python is mean, hateful, and cruel. While Python seems to like
everyone else, Python knows them personally and holds a grudge against them.
Because of this grudge, Python takes our perfectly written programs andrejects
them as “un�t” just to torment us.

>>> primt � Hello world! �
File "<stdin>", line 1

primt � Hello world! �
ˆ

SyntaxError: invalid syntax
>>> primt � Hello world �

File "<stdin>", line 1
primt � Hello world �

ˆ
SyntaxError: invalid syntax
>>> I hate you Python!

File "<stdin>", line 1
I hate you Python!

ˆ
SyntaxError: invalid syntax
>>> if you come out of there, I would teach you a lesson

File "<stdin>", line 1
if you come out of there, I would teach you a lesson

ˆ
SyntaxError: invalid syntax
>>>

There is little to be gained by arguing with Python. It is just a tool. It has no
emotions and it is happy and ready to serve you whenever you need it. Its error
messages sound harsh, but they are just Python's call for help. It has looked at
what you typed, and it simply cannot understand what you have entered.

Python is much more like a dog, loving you unconditionally, having a few key
words that it understands, looking you with a sweet look on its face (>>>), and
waiting for you to say something it understands. When Python says “SyntaxEr-
ror: invalid syntax”, it is simply wagging its tail and saying, “You seemed to say
something but I just don't understand what you meant, but please keep talking to
me (>>>).”

As your programs become increasingly sophisticated, you will encounter three
general types of errors:

Syntax errors: These are the �rst errors you will make and the easiest to �x. A
syntax error means that you have violated the “grammar” rules of Python.

14 Chapter 1. Why should you learn to write programs?

Python does its best to point right at the line and character where it noticedit
was confused. The only tricky bit of syntax errors is that sometimes the mis-
take that needs �xing is actually earlier in the program than where Python
noticedit was confused. So the line and character that Python indicates in a
syntax error may just be a starting point for your investigation.

Logic errors: A logic error is when your program has good syntax but there is
a mistake in the order of the statements or perhaps a mistake in how the
statements relate to one another. A good example of a logic error might be,
“take a drink from your water bottle, put it in your backpack, walk to the
library, and then put the top back on the bottle.”

Semantic errors: A semantic error is when your description of the steps to take
is syntactically perfect and in the right order, but there is simply a mistake
in the program. The program is perfectly correct but it does not do what
you intendedfor it to do. A simple example would be if you were giving a
person directions to a restaurant and said, “...when you reach the intersection
with the gas station, turn left and go one mile and the restaurant is a red
building on your left.” Your friend is very late and calls you to tell you that
they are on a farm and walking around behind a barn, with no sign of a
restaurant. Then you say “did you turn left or right at the gas station?” and
they say, “I followed your directions perfectly, I have them written down,it
says turn left and go one mile at the gas station.” Then you say, “I am very
sorry, because while my instructions were syntactically correct, they sadly
contained a small but undetected semantic error.”.

Again in all three types of errors, Python is merely trying its hardest to do exactly
what you have asked.

1.11 The learning journey

As you progress through the rest of the book, don't be afraid if the concepts don't
seem to �t together well the �rst time. When you were learning to speak, it was
not a problem for your �rst few years that you just made cute gurgling noises. And
it was OK if it took six months for you to move from simple vocabulary to simple
sentences and took 5-6 more years to move from sentences to paragraphs, and a
few more years to be able to write an interesting complete short story on your own.

We want you to learn Python much more rapidly, so we teach it all at the same
time over the next few chapters. But it is like learning a new language that takes
time to absorb and understand before it feels natural. That leads to some confusion
as we visit and revisit topics to try to get you to see the big picture while we are
de�ning the tiny fragments that make up that big picture. While the book is written
linearly, and if you are taking a course it will progress in a linear fashion,don't
hesitate to be very nonlinear in how you approach the material. Look forwards

1.12. Glossary 15

and backwards and read with a light touch. By skimming more advanced material
without fully understanding the details, you can get a better understandingof the
“why?” of programming. By reviewing previous material and even redoingearlier
exercises, you will realize that you actually learned a lot of material even ifthe
material you are currently staring at seems a bit impenetrable.

Usually when you are learning your �rst programming language, there are a few
wonderful “Ah Hah!” moments where you can look up from pounding away at
some rock with a hammer and chisel and step away and see that you are indeed
building a beautiful sculpture.

If something seems particularly hard, there is usually no value in staying up all
night and staring at it. Take a break, take a nap, have a snack, explain what you
are having a problem with to someone (or perhaps your dog), and then come back
to it with fresh eyes. I assure you that once you learn the programming concepts
in the book you will look back and see that it was all really easy and elegantand
it simply took you a bit of time to absorb it.

1.12 Glossary

bug: An error in a program.

central processing unit: The heart of any computer. It is what runs the software
that we write; also called “CPU” or “the processor”.

compile: To translate a program written in a high-level language into a low-level
language all at once, in preparation for later execution.

high-level language: A programming language like Python that is designed to be
easy for humans to read and write.

interactive mode: A way of using the Python interpreter by typing commands
and expressions at the prompt.

interpret: To execute a program in a high-level language by translating it one line
at a time.

low-level language: A programming language that is designed to be easy for a
computer to execute; also called “machine code” or “assembly language”.

machine code: The lowest-level language for software, which is the language
that is directly executed by the central processing unit (CPU).

main memory: Stores programs and data. Main memory loses its information
when the power is turned off.

parse: To examine a program and analyze the syntactic structure.

16 Chapter 1. Why should you learn to write programs?

portability: A property of a program that can run on more than one kind of com-
puter.

print statement: An instruction that causes the Python interpreter to display a
value on the screen.

problem solving: The process of formulating a problem, �nding a solution, and
expressing the solution.

program: A set of instructions that speci�es a computation.

prompt: When a program displays a message and pauses for the user to type
some input to the program.

secondary memory: Stores programs and data and retains its information even
when the power is turned off. Generally slower than main memory. Ex-
amples of secondary memory include disk drives and �ash memory in USB
sticks.

semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other than
what the programmer intended.

source code:A program in a high-level language.

1.13 Exercises

Exercise 1.1What is the function of the secondary memory in a computer?

a) Execute all of the computation and logic of the program
b) Retrieve web pages over the Internet
c) Store information for the long term – even beyond a power cycle
d) Take input from the user

Exercise 1.2What is a program?

Exercise 1.3What is the difference between a compiler and an interpreter?

Exercise 1.4Which of the following contains “machine code”?

a) The Python interpreter
b) The keyboard
c) Python source �le
d) A word processing document

Exercise 1.5What is wrong with the following code:

1.13. Exercises 17

>>> primt � Hello world! �
File "<stdin>", line 1

primt � Hello world! �
ˆ

SyntaxError: invalid syntax
>>>

Exercise 1.6Where in the computer is a variable such as “X” stored after the
following Python line �nishes?

x = 123

a) Central processing unit
b) Main Memory
c) Secondary Memory
d) Input Devices
e) Output Devices

Exercise 1.7What will the following program print out:

x = 43
x = x + 1
print x

a) 43
b) 44
c) x + 1
d) Error because x = x + 1 is not possible mathematically

Exercise 1.8Explain each of the following using an example of a human capa-
bility: (1) Central processing unit, (2) Main Memory, (3) Secondary Memory, (4)
Input Device, and (5) Output Device. For example, “What is the human equivalent
to a Central Processing Unit”?

Exercise 1.9How do you �x a “Syntax Error”?

18 Chapter 1. Why should you learn to write programs?

Chapter 2

Variables, expressions, and
statements

2.1 Values and types

A value is one of the basic things a program works with, like a letter or a number.
The values we have seen so far are1, 2, and� Hello, World! �

These values belong to differenttypes: 2 is an integer, and� Hello, World! � is a
string, so called because it contains a “string” of letters. You (and the interpreter)
can identify strings because they are enclosed in quotation marks.

The print statement also works for integers. We use thepython command to
start the interpreter.

python
>>> print 4
4

If you are not sure what type a value has, the interpreter can tell you.

>>> type(� Hello, World! �)
<type � str � >
>>> type(17)
<type � int � >

Not surprisingly, strings belong to the typestr and integers belong to the type
int . Less obviously, numbers with a decimal point belong to a type calledfloat ,
because these numbers are represented in a format called�oating point .

>>> type(3.2)
<type � float � >

What about values like� 17� and� 3.2 � ? They look like numbers, but they are in
quotation marks like strings.

20 Chapter 2. Variables, expressions, and statements

>>> type(� 17�)
<type � str � >
>>> type(� 3.2 �)
<type � str � >

They're strings.

When you type a large integer, you might be tempted to use commas between
groups of three digits, as in1,000,000 . This is not a legal integer in Python, but
it is legal:

>>> print 1,000,000
1 0 0

Well, that's not what we expected at all! Python interprets1,000,000 as a comma-
separated sequence of integers, which it prints with spaces between.

This is the �rst example we have seen of a semantic error: the code runs without
producing an error message, but it doesn't do the “right” thing.

2.2 Variables

One of the most powerful features of a programming language is the ability to
manipulatevariables. A variable is a name that refers to a value.

An assignment statementcreates new variables and gives them values:

>>> message = � And now for something completely different �
>>> n = 17
>>> pi = 3.1415926535897931

This example makes three assignments. The �rst assigns a string to a new vari-
able namedmessage ; the second assigns the integer17 to n; the third assigns the
(approximate) value ofp to pi .

To display the value of a variable, you can use a print statement:

>>> print n
17
>>> print pi
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)
<type � str � >
>>> type(n)
<type � int � >
>>> type(pi)
<type � float � >

2.3. Variable names and keywords 21

2.3 Variable names and keywords

Programmers generally choose names for their variables that are meaningful and
document what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers,
but they cannot start with a number. It is legal to use uppercase letters, but it is a
good idea to begin variable names with a lowercase letter (you'll see why later).

The underscore character (_) can appear in a name. It is often used in names with
multiple words, such asmy_nameor airspeed_of_unladen_swallow . Variable
names can start with an underscore character, but we generally avoid doing this
unless we are writing library code for others to use.

If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = � big parade �
SyntaxError: invalid syntax
>>> more@ = 1000000
SyntaxError: invalid syntax
>>> class = � Advanced Theoretical Zymurgy �
SyntaxError: invalid syntax

76trombones is illegal because it begins with a number.more@is illegal because
it contains an illegal character,@. But what's wrong withclass ?

It turns out thatclass is one of Python'skeywords. The interpreter uses keywords
to recognize the structure of the program, and they cannot be used as variable
names.

Python reserves 31 keywords1 for its use:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

You might want to keep this list handy. If the interpreter complains about oneof
your variable names and you don't know why, see if it is on this list.

2.4 Statements

A statement is a unit of code that the Python interpreter can execute. We have
seen two kinds of statements: print and assignment.

When you type a statement in interactive mode, the interpreter executes it and
displays the result, if there is one.

1In Python 3.0,exec is no longer a keyword, butnonlocal is.

22 Chapter 2. Variables, expressions, and statements

A script usually contains a sequence of statements. If there is more than one
statement, the results appear one at a time as the statements execute.

For example, the script

print 1
x = 2
print x

produces the output

1
2

The assignment statement produces no output.

2.5 Operators and operands

Operators are special symbols that represent computations like addition and mul-
tiplication. The values the operator is applied to are calledoperands.

The operators+, - , * , / , and ** perform addition, subtraction, multiplication,
division, and exponentiation, as in the following examples:

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

The division operator might not do what you expect:

>>> minute = 59
>>> minute/60
0

The value ofminute is 59, and in conventional arithmetic 59 divided by 60 is
0.98333, not 0. The reason for the discrepancy is that Python is performing �oor
division2.

When both of the operands are integers, the result is also an integer; �oor division
chops off the fractional part, so in this example it truncates the answer to zero.

If either of the operands is a �oating-point number, Python performs �oating-point
division, and the result is afloat :

>>> minute/60.0
0.98333333333333328

2In Python 3.0, the result of this division is afloat . In Python 3.0, the new operator// performs
integer division.

2.6. Expressions 23

2.6 Expressions

An expressionis a combination of values, variables, and operators. A value all
by itself is considered an expression, and so is a variable, so the followingare all
legal expressions (assuming that the variablex has been assigned a value):

17
x
x + 17

If you type an expression in interactive mode, the interpreterevaluatesit and
displays the result:

>>> 1 + 1
2

But in a script, an expression all by itself doesn't do anything! This is a common
source of confusion for beginners.

Exercise 2.1Type the following statements in the Python interpreter to see what
they do:

5
x = 5
x + 1

2.7 Order of operations

When more than one operator appears in an expression, the order of evaluation
depends on therules of precedence. For mathematical operators, Python follows
mathematical convention. The acronymPEMDAS is a useful way to remember
the rules:

• Parentheses have the highest precedence and can be used to force anexpres-
sion to evaluate in the order you want. Since expressions in parentheses are
evaluated �rst,2 * (3-1) is 4, and(1+1)**(5-2) is 8. You can also use
parentheses to make an expression easier to read, as in(minute * 100) /
60, even if it doesn't change the result.

• Exponentiation has the next highest precedence, so2**1+1 is 3, not 4, and
3*1**3 is 3, not 27.

• Multiplication andDivision have the same precedence, which is higher than
Addition andSubtraction, which also have the same precedence. So2*3-1
is 5, not 4, and6+4/2 is 8, not 5.

• Operators with the same precedence are evaluated from left to right. So the
expression5-3-1 is 1, not 3, because the5-3 happens �rst and then1 is
subtracted from2.

24 Chapter 2. Variables, expressions, and statements

When in doubt, always put parentheses in your expressions to make sure the com-
putations are performed in the order you intend.

2.8 Modulus operator

Themodulus operatorworks on integers and yields the remainder when the �rst
operand is divided by the second. In Python, the modulus operator is a percent
sign (%). The syntax is the same as for other operators:

>>> quotient = 7 / 3
>>> print quotient
2
>>> remainder = 7 % 3
>>> print remainder
1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can
check whether one number is divisible by another—ifx % y is zero, thenx is
divisible byy.

You can also extract the right-most digit or digits from a number. For example, x
% 10yields the right-most digit ofx (in base 10). Similarly,x % 100 yields the
last two digits.

2.9 String operations

The+ operator works with strings, but it is not addition in the mathematical sense.
Instead it performsconcatenation, which means joining the strings by linking
them end to end. For example:

>>> first = 10
>>> second = 15
>>> print first+second
25
>>> first = � 100 �
>>> second = � 150 �
>>> print first + second
100150

The output of this program is100150 .

2.10 Asking the user for input

Sometimes we would like to take the value for a variable from the user via their
keyboard. Python provides a built-in function calledraw_input that gets input

2.11. Comments 25

from the keyboard3. When this function is called, the program stops and waits for
the user to type something. When the user pressesReturn or Enter, the program
resumes andraw_input returns what the user typed as a string.

>>> input = raw_input()
Some silly stuff
>>> print input
Some silly stuff

Before getting input from the user, it is a good idea to print a prompt telling the
user what to input. You can pass a string toraw_input to be displayed to the user
before pausing for input:

>>> name = raw_input(� What is your name?\n �)
What is your name?
Chuck
>>> print name
Chuck

The sequence\n at the end of the prompt represents anewline, which is a special
character that causes a line break. That's why the user's input appears below the
prompt.

If you expect the user to type an integer, you can try to convert the return value to
int using theint() function:

>>> prompt = � What...is the airspeed velocity of an unladen swallow?\n �
>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?
17
>>> int(speed)
17
>>> int(speed) + 5
22

But if the user types something other than a string of digits, you get an error:

>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)
ValueError: invalid literal for int()

We will see how to handle this kind of error later.

2.11 Comments

As programs get bigger and more complicated, they get more dif�cult to read.
Formal languages are dense, and it is often dif�cult to look at a piece of code and
�gure out what it is doing, or why.

3In Python 3.0, this function is namedinput .

26 Chapter 2. Variables, expressions, and statements

For this reason, it is a good idea to add notes to your programs to explain in
natural language what the program is doing. These notes are calledcomments,
and in Python they start with the# symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments
at the end of a line:

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the# to the end of the line is ignored—it has no effect on the
program.

Comments are most useful when they document non-obvious features of the code.
It is reasonable to assume that the reader can �gure outwhat the code does; it is
much more useful to explainwhy.

This comment is redundant with the code and useless:

v = 5 # assign 5 to v

This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long names canmake
complex expressions hard to read, so there is a trade-off.

2.12 Choosing mnemonic variable names

As long as you follow the simple rules of variable naming, and avoid reserved
words, you have a lot of choice when you name your variables. In the beginning,
this choice can be confusing both when you read a program and when you write
your own programs. For example, the following three programs are identical in
terms of what they accomplish, but very different when you read them and try to
understand them.

a = 35.0
b = 12.50
c = a * b
print c

hours = 35.0
rate = 12.50
pay = hours * rate
print pay

x1q3z9ahd = 35.0
x1q3z9afd = 12.50
x1q3p9afd = x1q3z9ahd * x1q3z9afd
print x1q3p9afd

2.12. Choosing mnemonic variable names 27

The Python interpreter sees all three of these programs asexactly the samebut
humans see and understand these programs quite differently. Humans will most
quickly understand theintent of the second program because the programmer has
chosen variable names that re�ect their intent regarding what data will bestored
in each variable.

We call these wisely chosen variable names “mnemonic variable names”. The
word mnemonic4 means “memory aid”. We choose mnemonic variable names to
help us remember why we created the variable in the �rst place.

While this all sounds great, and it is a very good idea to use mnemonic variable
names, mnemonic variable names can get in the way of a beginning programmer's
ability to parse and understand code. This is because beginning programmers have
not yet memorized the reserved words (there are only 31 of them) and sometimes
variables with names that are too descriptive start to look like part of the language
and not just well-chosen variable names.

Take a quick look at the following Python sample code which loops through some
data. We will cover loops soon, but for now try to just puzzle through what this
means:

for word in words:
print word

What is happening here? Which of the tokens (for, word, in, etc.) are reserved
words and which are just variable names? Does Python understand at a funda-
mental level the notion of words? Beginning programmers have trouble separating
what parts of the codemustbe the same as this example and what parts of the code
are simply choices made by the programmer.

The following code is equivalent to the above code:

for slice in pizza:
print slice

It is easier for the beginning programmer to look at this code and know which
parts are reserved words de�ned by Python and which parts are simply variable
names chosen by the programmer. It is pretty clear that Python has no fundamental
understanding of pizza and slices and the fact that a pizza consists of a set of one
or more slices.

But if our program is truly about reading data and looking for words in thedata,
pizza andslice are very un-mnemonic variable names. Choosing them as vari-
able names distracts from the meaning of the program.

After a pretty short period of time, you will know the most common reserved
words and you will start to see the reserved words jumping out at you:

4Seehttp://en.wikipedia.org/wiki/Mnemonic for an extended description of the word
“mnemonic”.

28 Chapter 2. Variables, expressions, and statements

for word in words :
print word

The parts of the code that are de�ned by Python (for , in , print , and:) are in bold
and the programmer-chosen variables (word andwords) are not in bold. Many text
editors are aware of Python syntax and will color reserved words differently to give
you clues to keep your variables and reserved words separate. Aftera while you
will begin to read Python and quickly determine what is a variable and what is a
reserved word.

2.13 Debugging

At this point, the syntax error you are most likely to make is an illegal variable
name, likeclass andyield , which are keywords, orodd˜job andUS$, which
contain illegal characters.

If you put a space in a variable name, Python thinks it is two operands without an
operator:

>>> bad name = 5
SyntaxError: invalid syntax

For syntax errors, the error messages don't help much. The most common
messages areSyntaxError: invalid syntax andSyntaxError: invalid
token , neither of which is very informative.

The runtime error you are most likely to make is a “use before def;” that is, trying
to use a variable before you have assigned a value. This can happen if you spell a
variable name wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError: name � principle � is not defined

Variables names are case sensitive, soLaTeX is not the same aslatex .

At this point, the most likely cause of a semantic error is the order of operations.
For example, to evaluate12p , you might be tempted to write

>>> 1.0 / 2.0 * pi

But the division happens �rst, so you would getp=2, which is not the same thing!
There is no way for Python to know what you meant to write, so in this case you
don't get an error message; you just get the wrong answer.

2.14 Glossary

assignment: A statement that assigns a value to a variable.

2.14. Glossary 29

concatenate: To join two operands end to end.

comment: Information in a program that is meant for other programmers (or any-
one reading the source code) and has no effect on the execution of thepro-
gram.

evaluate: To simplify an expression by performing the operations in order to yield
a single value.

expression: A combination of variables, operators, and values that represents a
single result value.

�oating point: A type that represents numbers with fractional parts.

�oor division: The operation that divides two numbers and chops off the frac-
tional part.

integer: A type that represents whole numbers.

keyword: A reserved word that is used by the compiler to parse a program; you
cannot use keywords likeif , def , andwhile as variable names.

mnemonic: A memory aid. We often give variables mnemonic names to help us
remember what is stored in the variable.

modulus operator: An operator, denoted with a percent sign (%), that works on
integers and yields the remainder when one number is divided by another.

operand: One of the values on which an operator operates.

operator: A special symbol that represents a simple computation like addition,
multiplication, or string concatenation.

rules of precedence:The set of rules governing the order in which expressions
involving multiple operators and operands are evaluated.

statement: A section of code that represents a command or action. So far, the
statements we have seen are assignments and print statements.

string: A type that represents sequences of characters.

type: A category of values. The types we have seen so far are integers (typeint),
�oating-point numbers (typefloat), and strings (typestr).

value: One of the basic units of data, like a number or string, that a program
manipulates.

variable: A name that refers to a value.

30 Chapter 2. Variables, expressions, and statements

2.15 Exercises

Exercise 2.2Write a program that usesraw_input to prompt a user for their
name and then welcomes them.

Enter your name: Chuck
Hello Chuck

Exercise 2.3Write a program to prompt the user for hours and rate per hour to
compute gross pay.

Enter Hours: 35
Enter Rate: 2.75
Pay: 96.25

We won't worry about making sure our pay has exactly two digits after the decimal
place for now. If you want, you can play with the built-in Pythonround function
to properly round the resulting pay to two decimal places.

Exercise 2.4Assume that we execute the following assignment statements:

width = 17
height = 12.0

For each of the following expressions, write the value of the expression and the
type (of the value of the expression).

1. width/2

2. width/2.0

3. height/3

4. 1 + 2 * 5

Use the Python interpreter to check your answers.

Exercise 2.5Write a program which prompts the user for a Celsius temperature,
convert the temperature to Fahrenheit, and print out the converted temperature.

Chapter 3

Conditional execution

3.1 Boolean expressions

A boolean expressionis an expression that is either true or false. The following
examples use the operator==, which compares two operands and producesTrue
if they are equal andFalse otherwise:

>>> 5 == 5
True
>>> 5 == 6
False

True and False are special values that belong to the typebool ; they are not
strings:

>>> type(True)
<type � bool � >
>>> type(False)
<type � bool � >

The== operator is one of thecomparison operators; the others are:

x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y
x is y # x is the same as y
x is not y # x is not the same as y

Although these operations are probably familiar to you, the Python symbols are
different from the mathematical symbols for the same operations. A common error
is to use a single equal sign (=) instead of a double equal sign (==). Remember
that= is an assignment operator and== is a comparison operator. There is no such
thing as=< or =>.

32 Chapter 3. Conditional execution

3.2 Logical operators

There are threelogical operators: and , or , andnot . The semantics (meaning) of
these operators is similar to their meaning in English. For example,

x > 0 and x < 10

is true only ifx is greater than 0andless than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the
number is divisible by 2or 3.

Finally, thenot operator negates a boolean expression, sonot (x > y) is true if
x > y is false; that is, ifx is less than or equal toy.

Strictly speaking, the operands of the logical operators should be boolean expres-
sions, but Python is not very strict. Any nonzero number is interpreted as“true.”

>>> 17 and True
True

This �exibility can be useful, but there are some subtleties to it that might be
confusing. You might want to avoid it until you are sure you know what you are
doing.

3.3 Conditional execution

In order to write useful programs, we almost always need the ability to check con-
ditions and change the behavior of the program accordingly.Conditional state-
mentsgive us this ability. The simplest form is theif statement:

if x > 0 :
print � x is positive �

The boolean expression after theif statement is called thecondition. We end the
if statement with a colon character (:) and the line(s) after the if statement are
indented.

�����

����	�
���������	��

���

��

If the logical condition is true, then the indented statement gets executed. If the
logical condition is false, the indented statement is skipped.

3.4. Alternative execution 33

if statements have the same structure as function de�nitions orfor loops1.The
statement consists of a header line that ends with the colon character (:) followed
by an indented block. Statements like this are calledcompound statementsbe-
cause they stretch across more than one line.

There is no limit on the number of statements that can appear in the body, but there
must be at least one. Occasionally, it is useful to have a body with no statements
(usually as a placekeeper for code you haven't written yet). In that case, you can
use thepass statement, which does nothing.

if x < 0 :
pass # need to handle negative values!

If you enter anif statement in the Python interpreter, the prompt will change
from three chevrons to three dots to indicate you are in the middle of a block of
statements, as shown below:

>>> x = 3
>>> if x < 10:
... print � Small �
...
Small
>>>

3.4 Alternative execution

A second form of theif statement isalternative execution, in which there are two
possibilities and the condition determines which one gets executed. The syntax
looks like this:

if x%2 == 0 :
print � x is even �

else :
print � x is odd �

If the remainder whenx is divided by 2 is 0, then we know thatx is even, and the
program displays a message to that effect. If the condition is false, the second set
of statements is executed.

��������

��	
�����	����
�

��
�

��	
�����	�����

1We will learn about functions in Chapter 4 and loops in Chapter 5.

34 Chapter 3. Conditional execution

Since the condition must either be true or false, exactly one of the alternatives will
be executed. The alternatives are calledbranches, because they are branches in
the �ow of execution.

3.5 Chained conditionals

Sometimes there are more than two possibilities and we need more than two
branches. One way to express a computation like that is achained conditional:

if x < y:
print � x is less than y �

elif x > y:
print � x is greater than y �

else:
print � x and y are equal �

elif is an abbreviation of “else if.” Again, exactly one branch will be executed.

����� ����	�
��

��

��
�����

����	�
�����

����	�
����	��

There is no limit on the number ofelif statements. If there is anelse clause, it
has to be at the end, but there doesn't have to be one.

if choice == � a� :
print � Bad guess �

elif choice == � b� :
print � Good guess �

elif choice == � c� :
print � Close, but not correct �

Each condition is checked in order. If the �rst is false, the next is checked, and so
on. If one of them is true, the corresponding branch executes, and thestatement
ends. Even if more than one condition is true, only the �rst true branch executes.

3.6. Nested conditionals 35

3.6 Nested conditionals

One conditional can also be nested within another. We could have written the
three-branch example like this:

if x == y:
print � x and y are equal �

else:
if x < y:

print � x is less than y �
else:

print � x is greater than y �

The outer conditional contains two branches. The �rst branch containsa sim-
ple statement. The second branch contains anotherif statement, which has two
branches of its own. Those two branches are both simple statements, although
they could have been conditional statements as well.

������

����	�
���	��

���

����	�
����

�����

����	�
����

��

�����

Although the indentation of the statements makes the structure apparent,nested
conditionals become dif�cult to read very quickly. In general, it is a good idea to
avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements.
For example, we can rewrite the following code using a single conditional:

if 0 < x:
if x < 10:

print � x is a positive single-digit number. �

Theprint statement is executed only if we make it past both conditionals, so we
can get the same effect with theand operator:

if 0 < x and x < 10:
print � x is a positive single-digit number. �

36 Chapter 3. Conditional execution

3.7 Catching exceptions using try and except

Earlier we saw a code segment where we used theraw_input andint functions to
read and parse an integer number entered by the user. We also saw how treacherous
doing this could be:

>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)
ValueError: invalid literal for int()
>>>

When we are executing these statements in the Python interpreter, we get a new
prompt from the interpreter, think “oops”, and move on to our next statement.

However if you place this code in a Python script and this error occurs, your script
immediately stops in its tracks with a traceback. It does not execute the following
statement.

Here is a sample program to convert a Fahrenheit temperature to a Celsius tem-
perature:

inp = raw_input(� Enter Fahrenheit Temperature: �)
fahr = float(inp)
cel = (fahr - 32.0) * 5.0 / 9.0
print cel

If we execute this code and give it invalid input, it simply fails with an unfriendly
error message:

python fahren.py
Enter Fahrenheit Temperature:72
22.2222222222

python fahren.py
Enter Fahrenheit Temperature:fred
Traceback (most recent call last):

File "fahren.py", line 2, in <module>
fahr = float(inp)

ValueError: invalid literal for float(): fred

There is a conditional execution structure built into Python to handle these types of
expected and unexpected errors called “try / except”. The idea oftry andexcept
is that you know that some sequence of instruction(s) may have a problem and
you want to add some statements to be executed if an error occurs. These extra
statements (the except block) are ignored if there is no error.

You can think of thetry andexcept feature in Python as an “insurance policy”
on a sequence of statements.

We can rewrite our temperature converter as follows:

3.8. Short-circuit evaluation of logical expressions 37

inp = raw_input(� Enter Fahrenheit Temperature: �)
try:

fahr = float(inp)
cel = (fahr - 32.0) * 5.0 / 9.0
print cel

except:
print � Please enter a number �

Python starts by executing the sequence of statements in thetry block. If all goes
well, it skips theexcept block and proceeds. If an exception occurs in thetry
block, Python jumps out of thetry block and executes the sequence of statements
in theexcept block.

python fahren2.py
Enter Fahrenheit Temperature:72
22.2222222222

python fahren2.py
Enter Fahrenheit Temperature:fred
Please enter a number

Handling an exception with atry statement is calledcatching an exception. In
this example, theexcept clause prints an error message. In general, catching an
exception gives you a chance to �x the problem, or try again, or at least end the
program gracefully.

3.8 Short-circuit evaluation of logical expressions

When Python is processing a logical expression such asx >= 2 and (x/y) >
2, it evaluates the expression from left to right. Because of the de�nition ofand ,
if x is less than 2, the expressionx >= 2 is False and so the whole expression is
False regardless of whether(x/y) > 2 evaluates toTrue or False .

When Python detects that there is nothing to be gained by evaluating the rest of
a logical expression, it stops its evaluation and does not do the computationsin
the rest of the logical expression. When the evaluation of a logical expression
stops because the overall value is already known, it is calledshort-circuiting the
evaluation.

While this may seem like a �ne point, the short-circuit behavior leads to a clever
technique called theguardian pattern. Consider the following code sequence in
the Python interpreter:

>>> x = 6
>>> y = 2
>>> x >= 2 and (x/y) > 2
True
>>> x = 1
>>> y = 0
>>> x >= 2 and (x/y) > 2

38 Chapter 3. Conditional execution

False
>>> x = 6
>>> y = 0
>>> x >= 2 and (x/y) > 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>>

The third calculation failed because Python was evaluating(x/y) andy was zero,
which causes a runtime error. But the second example didnot fail because the
�rst part of the expressionx >= 2 evaluated toFalse so the(x/y) was not ever
executed due to theshort-circuit rule and there was no error.

We can construct the logical expression to strategically place aguard evaluation
just before the evaluation that might cause an error as follows:

>>> x = 1
>>> y = 0
>>> x >= 2 and y != 0 and (x/y) > 2
False
>>> x = 6
>>> y = 0
>>> x >= 2 and y != 0 and (x/y) > 2
False
>>> x >= 2 and (x/y) > 2 and y != 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>>

In the �rst logical expression,x >= 2 is False so the evaluation stops at theand.
In the second logical expression,x >= 2 is True buty != 0 is False so we never
reach(x/y) .

In the third logical expression, they != 0 is after the (x/y) calculation so the
expression fails with an error.

In the second expression, we say thaty != 0 acts as aguard to insure that we
only execute(x/y) if y is non-zero.

3.9 Debugging

The traceback Python displays when an error occurs contains a lot of information,
but it can be overwhelming. The most useful parts are usually:

• What kind of error it was, and

• Where it occurred.

3.10. Glossary 39

Syntax errors are usually easy to �nd, but there are a few gotchas. Whitespace er-
rors can be tricky because spaces and tabs are invisible and we are used to ignoring
them.

>>> x = 5
>>> y = 6

File "<stdin>", line 1
y = 6
ˆ

SyntaxError: invalid syntax

In this example, the problem is that the second line is indented by one space. But
the error message points toy, which is misleading. In general, error messages
indicate where the problem was discovered, but the actual error might beearlier
in the code, sometimes on a previous line.

The same is true of runtime errors. Suppose you are trying to compute a signal-to-
noise ratio in decibels. The formula isSNRdb = 10log10(Psignal=Pnoise). In Python,
you might write something like this:

import math
signal_power = 9
noise_power = 10
ratio = signal_power / noise_power
decibels = 10 * math.log10(ratio)
print decibels

But when you run it, you get an error message2:

Traceback (most recent call last):
File "snr.py", line 5, in ?

decibels = 10 * math.log10(ratio)
OverflowError: math range error

The error message indicates line 5, but there is nothing wrong with that line. To
�nd the real error, it might be useful to print the value ofratio , which turns
out to be 0. The problem is in line 4, because dividing two integers does �oor
division. The solution is to represent signal power and noise power with �oating-
point values.

In general, error messages tell you where the problem was discovered, but that is
often not where it was caused.

3.10 Glossary

body: The sequence of statements within a compound statement.

boolean expression:An expression whose value is eitherTrue or False .

2In Python 3.0, you no longer get an error message; the division operator performs �oating-point
division even with integer operands.

40 Chapter 3. Conditional execution

branch: One of the alternative sequences of statements in a conditional state-
ment.

chained conditional: A conditional statement with a series of alternative
branches.

comparison operator: One of the operators that compares its operands:==, != ,
>, <, >=, and<=.

conditional statement: A statement that controls the �ow of execution depend-
ing on some condition.

condition: The boolean expression in a conditional statement that determines
which branch is executed.

compound statement: A statement that consists of a header and a body. The
header ends with a colon (:). The body is indented relative to the header.

guardian pattern: Where we construct a logical expression with additional com-
parisons to take advantage of the short-circuit behavior.

logical operator: One of the operators that combines boolean expressions:and ,
or , andnot .

nested conditional: A conditional statement that appears in one of the branches
of another conditional statement.

traceback: A list of the functions that are executing, printed when an exception
occurs.

short circuit: When Python is part-way through evaluating a logical expression
and stops the evaluation because Python knows the �nal value for the ex-
pression without needing to evaluate the rest of the expression.

3.11 Exercises

Exercise 3.1Rewrite your pay computation to give the employee 1.5 times the
hourly rate for hours worked above 40 hours.

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

Exercise 3.2Rewrite your pay program usingtry andexcept so that your pro-
gram handles non-numeric input gracefully by printing a message and exiting the
program. The following shows two executions of the program:

3.11. Exercises 41

Enter Hours: 20
Enter Rate: nine
Error, please enter numeric input

Enter Hours: forty
Error, please enter numeric input

Exercise 3.3Write a program to prompt for a score between 0.0 and 1.0. If the
score is out of range, print an error message. If the score is between0.0 and 1.0,
print a grade using the following table:

Score Grade
>= 0.9 A
>= 0.8 B
>= 0.7 C
>= 0.6 D
< 0.6 F

Enter score: 0.95
A

Enter score: perfect
Bad score

Enter score: 10.0
Bad score

Enter score: 0.75
C

Enter score: 0.5
F

Run the program repeatedly as shown above to test the various different values for
input.

42 Chapter 3. Conditional execution

Chapter 4

Functions

4.1 Function calls

In the context of programming, afunction is a named sequence of statements that
performs a computation. When you de�ne a function, you specify the name and
the sequence of statements. Later, you can “call” the function by name. We have
already seen one example of afunction call:

>>> type(32)
<type � int � >

The name of the function istype . The expression in parentheses is called the
argument of the function. The argument is a value or variable that we are passing
into the function as input to the function. The result, for thetype function, is the
type of the argument.

It is common to say that a function “takes” an argument and “returns” a result.
The result is called thereturn value.

4.2 Built-in functions

Python provides a number of important built-in functions that we can use without
needing to provide the function de�nition. The creators of Python wrote a set of
functions to solve common problems and included them in Python for us to use.

Themax andmin functions give us the largest and smallest values in a list, respec-
tively:

>>> max(� Hello world �)
� w�
>>> min(� Hello world �)
� �
>>>

44 Chapter 4. Functions

Themax function tells us the “largest character” in the string (which turns out to be
the letter “w”) and themin function shows us the smallest character (which turns
out to be a space).

Another very common built-in function is thelen function which tells us how
many items are in its argument. If the argument tolen is a string, it returns the
number of characters in the string.

>>> len(� Hello world �)
11
>>>

These functions are not limited to looking at strings. They can operate on any set
of values, as we will see in later chapters.

You should treat the names of built-in functions as reserved words (i.e., avoid
using “max” as a variable name).

4.3 Type conversion functions

Python also provides built-in functions that convert values from one typeto an-
other. Theint function takes any value and converts it to an integer, if it can, or
complains otherwise:

>>> int(� 32�)
32
>>> int(� Hello �)
ValueError: invalid literal for int(): Hello

int can convert �oating-point values to integers, but it doesn't round off; it chops
off the fraction part:

>>> int(3.99999)
3
>>> int(-2.3)
-2

float converts integers and strings to �oating-point numbers:

>>> float(32)
32.0
>>> float(� 3.14159 �)
3.14159

Finally, str converts its argument to a string:

>>> str(32)
� 32�
>>> str(3.14159)
� 3.14159 �

4.4. Random numbers 45

4.4 Random numbers

Given the same inputs, most computer programs generate the same outputs every
time, so they are said to bedeterministic. Determinism is usually a good thing,
since we expect the same calculation to yield the same result. For some applica-
tions, though, we want the computer to be unpredictable. Games are an obvious
example, but there are more.

Making a program truly nondeterministic turns out to be not so easy, but there
are ways to make it at least seem nondeterministic. One of them is to usealgo-
rithms that generatepseudorandomnumbers. Pseudorandom numbers are not
truly random because they are generated by a deterministic computation, butjust
by looking at the numbers it is all but impossible to distinguish them from random.

The random module provides functions that generate pseudorandom numbers
(which I will simply call “random” from here on).

The functionrandom returns a random �oat between 0.0 and 1.0 (including 0.0
but not 1.0). Each time you callrandom , you get the next number in a long series.
To see a sample, run this loop:

import random

for i in range(10):
x = random.random()
print x

This program produces the following list of 10 random numbers between 0.0 and
up to but not including 1.0.

0.301927091705
0.513787075867
0.319470430881
0.285145917252
0.839069045123
0.322027080731
0.550722110248
0.366591677812
0.396981483964
0.838116437404

Exercise 4.1Run the program on your system and see what numbers you get.
Run the program more than once and see what numbers you get.

Therandom function is only one of many functions that handle random numbers.
The functionrandint takes the parameterslow andhigh , and returns an integer
betweenlow andhigh (including both).

>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

46 Chapter 4. Functions

To choose an element from a sequence at random, you can usechoice :

>>> t = [1, 2, 3]
>>> random.choice(t)
2
>>> random.choice(t)
3

Therandom module also provides functions to generate random values from con-
tinuous distributions including Gaussian, exponential, gamma, and a few more.

4.5 Math functions

Python has amath module that provides most of the familiar mathematical func-
tions. Before we can use the module, we have to import it:

>>> import math

This statement creates amodule object named math. If you print the module
object, you get some information about it:

>>> print math
<module � math � from � /usr/lib/python2.5/lib-dynload/math.so � >

The module object contains the functions and variables de�ned in the module.To
access one of the functions, you have to specify the name of the module andthe
name of the function, separated by a dot (also known as a period). This format is
calleddot notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The �rst example computes the logarithm base 10 of the signal-to-noise ratio.The
math module also provides a function calledlog that computes logarithms basee.

The second example �nds the sine ofradians . The name of the variable is a hint
thatsin and the other trigonometric functions (cos , tan , etc.) take arguments in
radians. To convert from degrees to radians, divide by 360 and multiplyby 2p:

>>> degrees = 45
>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)
0.707106781187

The expressionmath.pi gets the variablepi from the math module. The value of
this variable is an approximation ofp, accurate to about 15 digits.

If you know your trigonometry, you can check the previous result by comparing it
to the square root of two divided by two:

4.6. Adding new functions 47

>>> math.sqrt(2) / 2.0
0.707106781187

4.6 Adding new functions

So far, we have only been using the functions that come with Python, but it isalso
possible to add new functions. Afunction de�nition speci�es the name of a new
function and the sequence of statements that execute when the function is called.
Once we de�ne a function, we can reuse the function over and over throughout
our program.

Here is an example:

def print_lyrics():
print "I � m a lumberjack, and I � m okay."
print � I sleep all night and I work all day. �

def is a keyword that indicates that this is a function de�nition. The name of
the function isprint_lyrics . The rules for function names are the same as
for variable names: letters, numbers and some punctuation marks are legal, but
the �rst character can't be a number. You can't use a keyword as thename of a
function, and you should avoid having a variable and a function with the same
name.

The empty parentheses after the name indicate that this function doesn't takeany
arguments. Later we will build functions that take arguments as their inputs.

The �rst line of the function de�nition is called theheader; the rest is called
the body. The header has to end with a colon and the body has to be indented.
By convention, the indentation is always four spaces. The body can contain any
number of statements.

The strings in the print statements are enclosed in quotes. Single quotes and double
quotes do the same thing; most people use single quotes except in cases like this
where a single quote (which is also an apostrophe) appears in the string.

If you type a function de�nition in interactive mode, the interpreter prints ellipses
(...) to let you know that the de�nition isn't complete:

>>> def print_lyrics():
... print "I � m a lumberjack, and I � m okay."
... print � I sleep all night and I work all day. �
...

To end the function, you have to enter an empty line (this is not necessary in a
script).

De�ning a function creates a variable with the same name.

48 Chapter 4. Functions

>>> print print_lyrics
<function print_lyrics at 0xb7e99e9c>
>>> print type(print_lyrics)
<type � function � >

The value ofprint_lyrics is afunction object, which has type� function � .

The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()
I � m a lumberjack, and I � m okay.
I sleep all night and I work all day.

Once you have de�ned a function, you can use it inside another function.
For example, to repeat the previous refrain, we could write a function called
repeat_lyrics :

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then callrepeat_lyrics :

>>> repeat_lyrics()
I � m a lumberjack, and I � m okay.
I sleep all night and I work all day.
I � m a lumberjack, and I � m okay.
I sleep all night and I work all day.

But that's not really how the song goes.

4.7 De�nitions and uses

Pulling together the code fragments from the previous section, the whole program
looks like this:

def print_lyrics():
print "I � m a lumberjack, and I � m okay."
print � I sleep all night and I work all day. �

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

This program contains two function de�nitions: print_lyrics and
repeat_lyrics . Function de�nitions get executed just like other statements, but
the effect is to create function objects. The statements inside the function do not
get executed until the function is called, and the function de�nition generates no
output.

4.8. Flow of execution 49

As you might expect, you have to create a function before you can execute it. In
other words, the function de�nition has to be executed before the �rst time itis
called.

Exercise 4.2Move the last line of this program to the top, so the function call
appears before the de�nitions. Run the program and see what error message you
get.

Exercise 4.3Move the function call back to the bottom and move the de�nition of
print_lyrics after the de�nition ofrepeat_lyrics . What happens when you
run this program?

4.8 Flow of execution

In order to ensure that a function is de�ned before its �rst use, you have to know
the order in which statements are executed, which is called the�ow of execution.

Execution always begins at the �rst statement of the program. Statements are
executed one at a time, in order from top to bottom.

Functionde�nitions do not alter the �ow of execution of the program, but remem-
ber that statements inside the function are not executed until the function is called.

A function call is like a detour in the �ow of execution. Instead of going to the next
statement, the �ow jumps to the body of the function, executes all the statements
there, and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another.
While in the middle of one function, the program might have to execute the state-
ments in another function. But while executing that new function, the program
might have to execute yet another function!

Fortunately, Python is good at keeping track of where it is, so each time a function
completes, the program picks up where it left off in the function that called it.
When it gets to the end of the program, it terminates.

What's the moral of this sordid tale? When you read a program, you don't always
want to read from top to bottom. Sometimes it makes more sense if you follow
the �ow of execution.

4.9 Parameters and arguments

Some of the built-in functions we have seen require arguments. For example,
when you callmath.sin you pass a number as an argument. Some functions take
more than one argument:math.pow takes two, the base and the exponent.

50 Chapter 4. Functions

Inside the function, the arguments are assigned to variables calledparameters.
Here is an example of a user-de�ned function that takes an argument:

def print_twice(bruce):
print bruce
print bruce

This function assigns the argument to a parameter namedbruce . When the func-
tion is called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice(� Spam�)
Spam
Spam
>>> print_twice(17)
17
17
>>> print_twice(math.pi)
3.14159265359
3.14159265359

The same rules of composition that apply to built-in functions also apply to user-
de�ned functions, so we can use any kind of expression as an argument for
print_twice :

>>> print_twice(� Spam � *4)
Spam Spam Spam Spam
Spam Spam Spam Spam
>>> print_twice(math.cos(math.pi))
-1.0
-1.0

The argument is evaluated before the function is called, so in the examples the
expressions� Spam � *4 andmath.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = � Eric, the half a bee. �
>>> print_twice(michael)
Eric, the half a bee.
Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do
with the name of the parameter (bruce). It doesn't matter what the value was
called back home (in the caller); here inprint_twice , we call everybodybruce .

4.10 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results;
for lack of a better name, I call themfruitful functions . Other functions, like

4.10. Fruitful functions and void functions 51

print_twice , perform an action but don't return a value. They are calledvoid
functions.

When you call a fruitful function, you almost always want to do something with
the result; for example, you might assign it to a variable or use it as part of an
expression:

x = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)
2.2360679774997898

But in a script, if you call a fruitful function and do not store the result ofthe
function in a variable, the return value vanishes into the mist!

math.sqrt(5)

This script computes the square root of 5, but since it doesn't store theresult in a
variable or display the result, it is not very useful.

Void functions might display something on the screen or have some other effect,
but they don't have a return value. If you try to assign the result to a variable, you
get a special value calledNone.

>>> result = print_twice(� Bing �)
Bing
Bing
>>> print result
None

The valueNone is not the same as the string� None� . It is a special value that has
its own type:

>>> print type(None)
<type � NoneType � >

To return a result from a function, we use thereturn statement in our function.
For example, we could make a very simple function calledaddtwo that adds two
numbers together and returns a result.

def addtwo(a, b):
added = a + b
return added

x = addtwo(3, 5)
print x

When this script executes, theprint statement will print out “8” because the
addtwo function was called with 3 and 5 as arguments. Within the function, the
parametersa andb were 3 and 5 respectively. The function computed the sum of

52 Chapter 4. Functions

the two numbers and placed it in the local function variable namedadded . Then
it used thereturn statement to send the computed value back to the calling code
as the function result, which was assigned to the variablex and printed out.

4.11 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions.
There are several reasons:

• Creating a new function gives you an opportunity to name a group of state-
ments, which makes your program easier to read, understand, and debug.

• Functions can make a program smaller by eliminating repetitive code. Later,
if you make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at
a time and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you
write and debug one, you can reuse it.

Throughout the rest of the book, often we will use a function de�nition to explain
a concept. Part of the skill of creating and using functions is to have a function
properly capture an idea such as “�nd the smallest value in a list of values”. Later
we will show you code that �nds the smallest in a list of values and we will present
it to you as a function namedmin which takes a list of values as its argument and
returns the smallest value in the list.

4.12 Debugging

If you are using a text editor to write your scripts, you might run into problems
with spaces and tabs. The best way to avoid these problems is to use spaces
exclusively (no tabs). Most text editors that know about Python do this by default,
but some don't.

Tabs and spaces are usually invisible, which makes them hard to debug, sotry to
�nd an editor that manages indentation for you.

Also, don't forget to save your program before you run it. Some development
environments do this automatically, but some don't. In that case, the programyou
are looking at in the text editor is not the same as the program you are running.

Debugging can take a long time if you keep running the same incorrect program
over and over!

Make sure that the code you are looking at is the code you are running. If you're
not sure, put something likeprint � hello � at the beginning of the program and
run it again. If you don't seehello , you're not running the right program!

4.13. Glossary 53

4.13 Glossary
algorithm: A general process for solving a category of problems.

argument: A value provided to a function when the function is called. This value
is assigned to the corresponding parameter in the function.

body: The sequence of statements inside a function de�nition.

composition: Using an expression as part of a larger expression, or a statement
as part of a larger statement.

deterministic: Pertaining to a program that does the same thing each time it runs,
given the same inputs.

dot notation: The syntax for calling a function in another module by specifying
the module name followed by a dot (period) and the function name.

�ow of execution: The order in which statements are executed during a program
run.

fruitful function: A function that returns a value.

function: A named sequence of statements that performs some useful operation.
Functions may or may not take arguments and may or may not produce a
result.

function call: A statement that executes a function. It consists of the function
name followed by an argument list.

function de�nition: A statement that creates a new function, specifying its name,
parameters, and the statements it executes.

function object: A value created by a function de�nition. The name of the func-
tion is a variable that refers to a function object.

header: The �rst line of a function de�nition.

import statement: A statement that reads a module �le and creates a module
object.

module object: A value created by animport statement that provides access to
the data and code de�ned in a module.

parameter: A name used inside a function to refer to the value passed as an
argument.

pseudorandom: Pertaining to a sequence of numbers that appear to be random,
but are generated by a deterministic program.

return value: The result of a function. If a function call is used as an expression,
the return value is the value of the expression.

void function: A function that does not return a value.

54 Chapter 4. Functions

4.14 Exercises

Exercise 4.4What is the purpose of the ”def” keyword in Python?

a) It is slang that means ”the following code is really cool”
b) It indicates the start of a function
c) It indicates that the following indented section of code is to be stored for later
d) b and c are both true
e) None of the above

Exercise 4.5What will the following Python program print out?

def fred():
print "Zap"

def jane():
print "ABC"

jane()
fred()
jane()

a) Zap ABC jane fred jane
b) Zap ABC Zap
c) ABC Zap jane
d) ABC Zap ABC
e) Zap Zap Zap

Exercise 4.6Rewrite your pay computation with time-and-a-half for overtime
and create a function calledcomputepay which takes two parameters (hours and
rate).

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

Exercise 4.7Rewrite the grade program from the previous chapter using a func-
tion calledcomputegrade that takes a score as its parameter and returns a grade
as a string.

Score Grade
> 0.9 A
> 0.8 B
> 0.7 C
> 0.6 D
<= 0.6 F

Program Execution:

Enter score: 0.95

4.14. Exercises 55

A

Enter score: perfect
Bad score

Enter score: 10.0
Bad score

Enter score: 0.75
C

Enter score: 0.5
F

Run the program repeatedly to test the various different values for input.

56 Chapter 4. Functions

Chapter 5

Iteration

5.1 Updating variables

A common pattern in assignment statements is an assignment statement that up-
dates a variable – where the new value of the variable depends on the old.

x = x+1

This means “get the current value ofx, add 1, and then updatex with the new
value.”

If you try to update a variable that doesn't exist, you get an error, because Python
evaluates the right side before it assigns a value tox:

>>> x = x+1
NameError: name � x� is not defined

Before you can update a variable, you have toinitialize it, usually with a simple
assignment:

>>> x = 0
>>> x = x+1

Updating a variable by adding 1 is called anincrement; subtracting 1 is called a
decrement.

5.2 Thewhile statement

Computers are often used to automate repetitive tasks. Repeating identical orsim-
ilar tasks without making errors is something that computers do well and people
do poorly. Because iteration is so common, Python provides several language
features to make it easier.

One form of iteration in Python is thewhile statement. Here is a simple program
that counts down from �ve and then says “Blastoff!”.

58 Chapter 5. Iteration

n = 5
while n > 0:

print n
n = n-1

print � Blastoff! �

You can almost read thewhile statement as if it were English. It means, “Whilen
is greater than 0, display the value ofn and then reduce the value ofn by 1. When
you get to 0, exit thewhile statement and display the wordBlastoff! ”

More formally, here is the �ow of execution for awhile statement:

1. Evaluate the condition, yieldingTrue or False .

2. If the condition is false, exit thewhile statement and continue execution at
the next statement.

3. If the condition is true, execute the body and then go back to step 1.

This type of �ow is called aloop because the third step loops back around to the
top. We call each time we execute the body of the loop aniteration. For the above
loop, we would say, “It had �ve iterations”, which means that the body of the loop
was executed �ve times.

The body of the loop should change the value of one or more variables so that
eventually the condition becomes false and the loop terminates. We call the vari-
able that changes each time the loop executes and controls when the loop �nishes
theiteration variable. If there is no iteration variable, the loop will repeat forever,
resulting in anin�nite loop .

5.3 In�nite loops

An endless source of amusement for programmers is the observation that the di-
rections on shampoo, “Lather, rinse, repeat,” are an in�nite loop because there is
no iteration variable telling you how many times to execute the loop.

In the case ofcountdown , we can prove that the loop terminates because we know
that the value ofn is �nite, and we can see that the value ofn gets smaller each
time through the loop, so eventually we have to get to 0. Other times a loop is
obviously in�nite because it has no iteration variable at all.

5.4 “In�nite loops” and break

Sometimes you don't know it's time to end a loop until you get half way through
the body. In that case you can write an in�nite loop on purpose and then use the
break statement to jump out of the loop.

5.5. Finishing iterations with continue 59

This loop is obviously anin�nite loop because the logical expression on thewhile
statement is simply the logical constantTrue :

n = 10
while True:

print n,
n = n - 1

print � Done! �

If you make the mistake and run this code, you will learn quickly how to stop
a runaway Python process on your system or �nd where the power-off button is
on your computer. This program will run forever or until your battery runs out
because the logical expression at the top of the loop is always true by virtue of the
fact that the expression is the constant valueTrue .

While this is a dysfunctional in�nite loop, we can still use this pattern to build
useful loops as long as we carefully add code to the body of the loop to explicitly
exit the loop usingbreak when we have reached the exit condition.

For example, suppose you want to take input from the user until they typedone .
You could write:

while True:
line = raw_input(� > �)
if line == � done � :

break
print line

print � Done! �

The loop condition isTrue , which is always true, so the loop runs repeatedly until
it hits the break statement.

Each time through, it prompts the user with an angle bracket. If the user types
done , thebreak statement exits the loop. Otherwise the program echoes whatever
the user types and goes back to the top of the loop. Here's a sample run:

> hello there
hello there
> finished
finished
> done
Done!

This way of writingwhile loops is common because you can check the condition
anywhere in the loop (not just at the top) and you can express the stop condition
af�rmatively (“stop when this happens”) rather than negatively (“keepgoing until
that happens.”).

5.5 Finishing iterations with continue

Sometimes you are in an iteration of a loop and want to �nish the current iteration
and immediately jump to the next iteration. In that case you can use thecontinue

60 Chapter 5. Iteration

statement to skip to the next iteration without �nishing the body of the loop for
the current iteration.

Here is an example of a loop that copies its input until the user types “done”,but
treats lines that start with the hash character as lines not to be printed (kind of like
Python comments).

while True:
line = raw_input(� > �)
if line[0] == � #� :

continue
if line == � done � :

break
print line

print � Done! �

Here is a sample run of this new program withcontinue added.

> hello there
hello there
> # don � t print this
> print this!
print this!
> done
Done!

All the lines are printed except the one that starts with the hash sign becausewhen
thecontinue is executed, it ends the current iteration and jumps back to thewhile
statement to start the next iteration, thus skipping theprint statement.

5.6 De�nite loops usingfor

Sometimes we want to loop through asetof things such as a list of words, the lines
in a �le, or a list of numbers. When we have a list of things to loop through, we
can construct ade�nite loop using afor statement. We call thewhile statement
an inde�nite loop because it simply loops until some condition becomesFalse ,
whereas thefor loop is looping through a known set of items so it runs through
as many iterations as there are items in the set.

The syntax of afor loop is similar to thewhile loop in that there is afor state-
ment and a loop body:

friends = [� Joseph � , � Glenn � , � Sally �]
for friend in friends:

print � Happy New Year: � , friend
print � Done! �

In Python terms, the variablefriends is a list1 of three strings and thefor loop
goes through the list and executes the body once for each of the three strings in
the list resulting in this output:

1We will examine lists in more detail in a later chapter.

5.7. Loop patterns 61

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally
Done!

Translating thisfor loop to English is not as direct as thewhile , but if you think
of friends as aset, it goes like this: “Run the statements in the body of the for loop
once for each friendin the set named friends.”

Looking at thefor loop, for andin are reserved Python keywords, andfriend
andfriends are variables.

for friend in friends :
print 'Happy New Year', friend

In particular, friend is the iteration variable for the for loop. The variable
friend changes for each iteration of the loop and controls when thefor loop
completes. Theiteration variable steps successively through the three strings
stored in thefriends variable.

5.7 Loop patterns

Often we use afor or while loop to go through a list of items or the contents of
a �le and we are looking for something such as the largest or smallest value of the
data we scan through.

These loops are generally constructed by:

• Initializing one or more variables before the loop starts

• Performing some computation on each item in the loop body, possibly
changing the variables in the body of the loop

• Looking at the resulting variables when the loop completes

We will use a list of numbers to demonstrate the concepts and construction of
these loop patterns.

5.7.1 Counting and summing loops

For example, to count the number of items in a list, we would write the following
for loop:

count = 0
for itervar in [3, 41, 12, 9, 74, 15]:

count = count + 1
print � Count: � , count

62 Chapter 5. Iteration

We set the variablecount to zero before the loop starts, then we write afor loop
to run through the list of numbers. Ouriteration variable is nameditervar and
while we do not useitervar in the loop, it does control the loop and cause the
loop body to be executed once for each of the values in the list.

In the body of the loop, we add 1 to the current value ofcount for each of the
values in the list. While the loop is executing, the value ofcount is the number of
values we have seen “so far”.

Once the loop completes, the value ofcount is the total number of items. The
total number “falls in our lap” at the end of the loop. We construct the loop sothat
we have what we want when the loop �nishes.

Another similar loop that computes the total of a set of numbers is as follows:

total = 0
for itervar in [3, 41, 12, 9, 74, 15]:

total = total + itervar
print � Total: � , total

In this loop wedouse theiteration variable. Instead of simply adding one to the
count as in the previous loop, we add the actual number (3, 41, 12, etc.) to the
running total during each loop iteration. If you think about the variabletotal , it
contains the “running total of the values so far”. So before the loop startstotal
is zero because we have not yet seen any values, during the looptotal is the
running total, and at the end of the looptotal is the overall total of all the values
in the list.

As the loop executes,total accumulates the sum of the elements; a variable used
this way is sometimes called anaccumulator.

Neither the counting loop nor the summing loop are particularly useful in practice
because there are built-in functionslen() andsum() that compute the number of
items in a list and the total of the items in the list respectively.

5.7.2 Maximum and minimum loops

To �nd the largest value in a list or sequence, we construct the following loop:

largest = None
print � Before: � , largest
for itervar in [3, 41, 12, 9, 74, 15]:

if largest is None or itervar > largest :
largest = itervar

print � Loop: � , itervar, largest
print � Largest: � , largest

When the program executes, the output is as follows:

5.7. Loop patterns 63

Before: None
Loop: 3 3
Loop: 41 41
Loop: 12 41
Loop: 9 41
Loop: 74 74
Loop: 15 74
Largest: 74

The variablelargest is best thought of as the “largest value we have seen so far”.
Before the loop, we setlargest to the constantNone. None is a special constant
value which we can store in a variable to mark the variable as “empty”.

Before the loop starts, the largest value we have seen so far isNone since we
have not yet seen any values. While the loop is executing, iflargest is None
then we take the �rst value we see as the largest so far. You can see in the�rst
iteration when the value ofitervar is 3, sincelargest is None, we immediately
setlargest to be 3.

After the �rst iteration,largest is no longerNone, so the second part of the com-
pound logical expression that checksitervar > largest triggers only when we
see a value that is larger than the “largest so far”. When we see a new “even larger”
value we take that new value forlargest . You can see in the program output that
largest progresses from 3 to 41 to 74.

At the end of the loop, we have scanned all of the values and the variablelargest
now does contain the largest value in the list.

To compute the smallest number, the code is very similar with one small change:

smallest = None
print � Before: � , smallest
for itervar in [3, 41, 12, 9, 74, 15]:

if smallest is None or itervar < smallest:
smallest = itervar

print � Loop: � , itervar, smallest
print � Smallest: � , smallest

Again, smallest is the “smallest so far” before, during, and after the loop exe-
cutes. When the loop has completed,smallest contains the minimum value in
the list.

Again as in counting and summing, the built-in functionsmax() andmin() make
writing these exact loops unnecessary.

The following is a simple version of the Python built-inmin() function:

def min(values):
smallest = None
for value in values:

if smallest is None or value < smallest:
smallest = value

return smallest

64 Chapter 5. Iteration

In the function version of the smallest code, we removed all of theprint state-
ments so as to be equivalent to themin function which is already built in to Python.

5.8 Debugging

As you start writing bigger programs, you might �nd yourself spending more time
debugging. More code means more chances to make an error and more places for
bugs to hide.

One way to cut your debugging time is “debugging by bisection.” For example,
if there are 100 lines in your program and you check them one at a time, it would
take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program,
or near it, for an intermediate value you can check. Add aprint statement (or
something else that has a veri�able effect) and run the program.

If the mid-point check is incorrect, the problem must be in the �rst half of the
program. If it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you have
to search. After six steps (which is much less than 100), you would be downto
one or two lines of code, at least in theory.

In practice it is not always clear what the “middle of the program” is and not
always possible to check it. It doesn't make sense to count lines and �ndthe exact
midpoint. Instead, think about places in the program where there might be errors
and places where it is easy to put a check. Then choose a spot where you think the
chances are about the same that the bug is before or after the check.

5.9 Glossary

accumulator: A variable used in a loop to add up or accumulate a result.

counter: A variable used in a loop to count the number of times something hap-
pened. We initialize a counter to zero and then increment the counter each
time we want to “count” something.

decrement: An update that decreases the value of a variable.

initialize: An assignment that gives an initial value to a variable that will be up-
dated.

increment: An update that increases the value of a variable (often by one).

in�nite loop: A loop in which the terminating condition is never satis�ed or for
which there is no terminating condition.

5.10. Exercises 65

iteration: Repeated execution of a set of statements using either a function that
calls itself or a loop.

5.10 Exercises

Exercise 5.1Write a program which repeatedly reads numbers until the user en-
ters “done”. Once “done” is entered, print out the total, count, and average of
the numbers. If the user enters anything other than a number, detect their mistake
usingtry andexcept and print an error message and skip to the next number.

Enter a number: 4
Enter a number: 5
Enter a number: bad data
Invalid input
Enter a number: 7
Enter a number: done
16 3 5.33333333333

Exercise 5.2Write another program that prompts for a list of numbers as above
and at the end prints out both the maximum and minimum of the numbers instead
of the average.

66 Chapter 5. Iteration

Chapter 6

Strings

6.1 A string is a sequence

A string is asequenceof characters. You can access the characters one at a time
with the bracket operator:

>>> fruit = � banana �
>>> letter = fruit[1]

The second statement extracts the character at index position 1 from thefruit
variable and assigns it to theletter variable.

The expression in brackets is called anindex. The index indicates which character
in the sequence you want (hence the name).

But you might not get what you expect:

>>> print letter
a

For most people, the �rst letter of� banana � is b, nota. But in Python, the index
is an offset from the beginning of the string, and the offset of the �rst letter is zero.

>>> letter = fruit[0]
>>> print letter
b

Sob is the 0th letter (“zero-eth”) of� banana � , a is the 1th letter (“one-eth”), and
n is the 2th (“two-eth”) letter.

� � � � ��
��� ��� ��� ��� ��� ���

You can use any expression, including variables and operators, as anindex, but the
value of the index has to be an integer. Otherwise you get:

>>> letter = fruit[1.5]
TypeError: string indices must be integers

68 Chapter 6. Strings

6.2 Getting the length of a string usinglen

len is a built-in function that returns the number of characters in a string:

>>> fruit = � banana �
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

The reason for theIndexError is that there is no letter in'banana' with the
index 6. Since we started counting at zero, the six letters are numbered 0 to 5. To
get the last character, you have to subtract 1 fromlength :

>>> last = fruit[length-1]
>>> print last
a

Alternatively, you can use negative indices, which count backward from the end
of the string. The expressionfruit[-1] yields the last letter,fruit[-2] yields
the second to last, and so on.

6.3 Traversal through a string with a loop

A lot of computations involve processing a string one character at a time. Often
they start at the beginning, select each character in turn, do something to it,and
continue until the end. This pattern of processing is called atraversal. One way
to write a traversal is with awhile loop:

index = 0
while index < len(fruit):

letter = fruit[index]
print letter
index = index + 1

This loop traverses the string and displays each letter on a line by itself. The
loop condition isindex < len(fruit) , so whenindex is equal to the length of
the string, the condition is false, and the body of the loop is not executed. The
last character accessed is the one with the indexlen(fruit)-1 , which is the last
character in the string.

Exercise 6.1Write awhile loop that starts at the last character in the string and
works its way backwards to the �rst character in the string, printing each letter on
a separate line, except backwards.

Another way to write a traversal is with afor loop:

6.4. String slices 69

for char in fruit:
print char

Each time through the loop, the next character in the string is assigned to the
variablechar . The loop continues until no characters are left.

6.4 String slices

A segment of a string is called aslice. Selecting a slice is similar to selecting a
character:

>>> s = � Monty Python �
>>> print s[0:5]
Monty
>>> print s[6:12]
Python

The operator[n:m] returns the part of the string from the “n-eth” character to the
“m-eth” character, including the �rst but excluding the last.

If you omit the �rst index (before the colon), the slice starts at the beginning of
the string. If you omit the second index, the slice goes to the end of the string:

>>> fruit = � banana �
>>> fruit[:3]
� ban �
>>> fruit[3:]
� ana �

If the �rst index is greater than or equal to the second the result is anempty string,
represented by two quotation marks:

>>> fruit = � banana �
>>> fruit[3:3]
��

An empty string contains no characters and has length 0, but other than that,it is
the same as any other string.

Exercise 6.2Given thatfruit is a string, what doesfruit[:] mean?

6.5 Strings are immutable

It is tempting to use the[] operator on the left side of an assignment, with the
intention of changing a character in a string. For example:

>>> greeting = � Hello, world! �
>>> greeting[0] = � J�
TypeError: object does not support item assignment

70 Chapter 6. Strings

The “object” in this case is the string and the “item” is the character you tried to
assign. For now, anobject is the same thing as a value, but we will re�ne that
de�nition later. An item is one of the values in a sequence.

The reason for the error is that strings areimmutable, which means you can't
change an existing string. The best you can do is create a new string that isa
variation on the original:

>>> greeting = � Hello, world! �
>>> new_greeting = � J� + greeting[1:]
>>> print new_greeting
Jello, world!

This example concatenates a new �rst letter onto a slice ofgreeting . It has no
effect on the original string.

6.6 Looping and counting

The following program counts the number of times the lettera appears in a string:

word = � banana �
count = 0
for letter in word:

if letter == � a� :
count = count + 1

print count

This program demonstrates another pattern of computation called acounter. The
variablecount is initialized to 0 and then incremented each time ana is found.
When the loop exits,count contains the result—the total number ofa's.

Exercise 6.3Encapsulate this code in a function namedcount , and generalize it
so that it accepts the string and the letter as arguments.

6.7 Thein operator

The wordin is a boolean operator that takes two strings and returnsTrue if the
�rst appears as a substring in the second:

>>> � a� in � banana �
True
>>> � seed � in � banana �
False

6.8 String comparison

The comparison operators work on strings. To see if two strings are equal:

6.9. string methods 71

if word == � banana � :
print � All right, bananas. �

Other comparison operations are useful for putting words in alphabeticalorder:

if word < � banana � :
print � Your word, � + word + � , comes before banana. �

elif word > � banana � :
print � Your word, � + word + � , comes after banana. �

else:
print � All right, bananas. �

Python does not handle uppercase and lowercase letters the same way that people
do. All the uppercase letters come before all the lowercase letters, so:

Your word, Pineapple, comes before banana.

A common way to address this problem is to convert strings to a standard format,
such as all lowercase, before performing the comparison. Keep that in mind in
case you have to defend yourself against a man armed with a Pineapple.

6.9 string methods

Strings are an example of Pythonobjects. An object contains both data (the actual
string itself) andmethods, which are effectively functions that are built into the
object and are available to anyinstanceof the object.

Python has a function calleddir which lists the methods available for an object.
The type function shows the type of an object and thedir function shows the
available methods.

>>> stuff = � Hello world �
>>> type(stuff)
<type � str � >
>>> dir(stuff)
[� capitalize � , � center � , � count � , � decode � , � encode � ,
� endswith � , � expandtabs � , � find � , � format � , � index � ,
� isalnum � , � isalpha � , � isdigit � , � islower � , � isspace � ,
� istitle � , � isupper � , � join � , � ljust � , � lower � , � lstrip � ,
� partition � , � replace � , � rfind � , � rindex � , � rjust � ,
� rpartition � , � rsplit � , � rstrip � , � split � , � splitlines � ,
� startswith � , � strip � , � swapcase � , � title � , � translate � ,
� upper � , � zfill �]
>>> help(str.capitalize)
Help on method_descriptor:

capitalize(...)
S.capitalize() -> string

Return a copy of the string S with only its first character
capitalized.

>>>

72 Chapter 6. Strings

While the dir function lists the methods, and you can usehelp to get some
simple documentation on a method, a better source of documentation for string
methods would behttps://docs.python.org/2/library/stdtypes.html#
string-methods .

Calling amethod is similar to calling a function—it takes arguments and returns
a value—but the syntax is different. We call a method by appending the method
name to the variable name using the period as a delimiter.

For example, the methodupper takes a string and returns a new string with all
uppercase letters:

Instead of the function syntaxupper(word) , it uses the method syntax
word.upper() .

>>> word = � banana �
>>> new_word = word.upper()
>>> print new_word
BANANA

This form of dot notation speci�es the name of the method,upper , and the name
of the string to apply the method to,word . The empty parentheses indicate that
this method takes no argument.

A method call is called aninvocation; in this case, we would say that we are
invoking upper on theword .

For example, there is a string method namedfind that searches for the position of
one string within another:

>>> word = � banana �
>>> index = word.find(� a�)
>>> print index
1

In this example, we invokefind on word and pass the letter we are looking for as
a parameter.

Thefind method can �nd substrings as well as characters:

>>> word.find(� na�)
2

It can take as a second argument the index where it should start:

>>> word.find(� na� , 3)
4

One common task is to remove white space (spaces, tabs, or newlines) from the
beginning and end of a string using thestrip method:

>>> line = � Here we go �
>>> line.strip()
� Here we go �

6.10. Parsing strings 73

Some methods such asstartswith return boolean values.

>>> line = � Please have a nice day �
>>> line.startswith(� Please �)
True
>>> line.startswith(� p�)
False

You will note thatstartswith requires case to match, so sometimes we take a line
and map it all to lowercase before we do any checking using thelower method.

>>> line = � Please have a nice day �
>>> line.startswith(� p�)
False
>>> line.lower()
� please have a nice day �
>>> line.lower().startswith(� p�)
True

In the last example, the methodlower is called and then we usestartswith to
see if the resulting lowercase string starts with the letter “p”. As long as we are
careful with the order, we can make multiple method calls in a single expression.

Exercise 6.4There is a string method calledcount that is similar to the function
in the previous exercise. Read the documentation of this method athttps://
docs.python.org/2/library/stdtypes.html#string-meth ods and write an
invocation that counts the number of times the letter a occurs in� banana � .

6.10 Parsing strings

Often, we want to look into a string and �nd a substring. For example if we were
presented a series of lines formatted as follows:

From stephen.marquard@ uct.ac.za Sat Jan 5 09:14:16 2008

and we wanted to pull out only the second half of the address (i.e.,uct.ac.za)
from each line, we can do this by using thefind method and string slicing.

First, we will �nd the position of the at-sign in the string. Then we will �nd the
position of the �rst spaceafter the at-sign. And then we will use string slicing to
extract the portion of the string which we are looking for.

>>> data = � From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008 �
>>> atpos = data.find(� @�)
>>> print atpos
21
>>> sppos = data.find(� � ,atpos)
>>> print sppos
31
>>> host = data[atpos+1:sppos]
>>> print host
uct.ac.za
>>>

74 Chapter 6. Strings

We use a version of thefind method which allows us to specify a position in
the string where we wantfind to start looking. When we slice, we extract the
characters from “one beyond the at-sign through up tobut not includingthe space
character”.

The documentation for thefind method is available athttps://docs.python.
org/2/library/stdtypes.html#string-methods .

6.11 Format operator

The format operator , % allows us to construct strings, replacing parts of the
strings with the data stored in variables. When applied to integers,%is the modulus
operator. But when the �rst operand is a string,%is the format operator.

The �rst operand is theformat string , which contains one or moreformat se-
quencesthat specify how the second operand is formatted. The result is a string.

For example, the format sequence� %d� means that the second operand should be
formatted as an integer (d stands for “decimal”):

>>> camels = 42
>>> � %d� % camels
� 42�

The result is the string� 42� , which is not to be confused with the integer value
42.

A format sequence can appear anywhere in the string, so you can embeda value
in a sentence:

>>> camels = 42
>>> � I have spotted %d camels. � % camels
� I have spotted 42 camels. �

If there is more than one format sequence in the string, the second argument has
to be a tuple1. Each format sequence is matched with an element of the tuple, in
order.

The following example uses� %d� to format an integer,� %g� to format a �oating-
point number (don't ask why), and� %s� to format a string:

>>> � In %d years I have spotted %g %s. � % (3, 0.1, � camels �)
� In 3 years I have spotted 0.1 camels. �

The number of elements in the tuple must match the number of format sequences
in the string. The types of the elements also must match the format sequences:

1A tuple is a sequence of comma-separated values inside a pair of parenthesis. We will cover
tuples in Chapter 10

6.12. Debugging 75

>>> � %d %d %d� % (1, 2)
TypeError: not enough arguments for format string
>>> � %d� % � dollars �
TypeError: illegal argument type for built-in operation

In the �rst example, there aren't enough elements; in the second, the element is
the wrong type.

The format operator is powerful, but it can be dif�cult to use. You can read
more about it athttps://docs.python.org/2/library/stdtypes.html#
string-formatting .

6.12 Debugging

A skill that you should cultivate as you program is always asking yourself, “What
could go wrong here?” or alternatively, “What crazy thing might our user do to
crash our (seemingly) perfect program?”

For example, look at the program which we used to demonstrate thewhile loop
in the chapter on iteration:

while True:
line = raw_input(� > �)
if line[0] == � #� :

continue
if line == � done � :

break
print line

print � Done! �

Look what happens when the user enters an empty line of input:

> hello there
hello there
> # don � t print this
> print this!
print this!
>
Traceback (most recent call last):

File "copytildone.py", line 3, in <module>
if line[0] == � #� :

The code works �ne until it is presented an empty line. Then there is no zero-th
character, so we get a traceback. There are two solutions to this to make linethree
“safe” even if the line is empty.

One possibility is to simply use thestartswith method which returnsFalse if
the string is empty.

if line.startswith(� #�) :

76 Chapter 6. Strings

Another way is to safely write theif statement using theguardian pattern and
make sure the second logical expression is evaluated only where there is at least
one character in the string.:

if len(line) > 0 and line[0] == � #� :

6.13 Glossary

counter: A variable used to count something, usually initialized to zero and then
incremented.

empty string: A string with no characters and length 0, represented by two quo-
tation marks.

format operator: An operator,%, that takes a format string and a tuple and gen-
erates a string that includes the elements of the tuple formatted as speci�ed
by the format string.

format sequence: A sequence of characters in a format string, like%d, that spec-
i�es how a value should be formatted.

format string: A string, used with the format operator, that contains format se-
quences.

�ag: A boolean variable used to indicate whether a condition is true.

invocation: A statement that calls a method.

immutable: The property of a sequence whose items cannot be assigned.

index: An integer value used to select an item in a sequence, such as a character
in a string.

item: One of the values in a sequence.

method: A function that is associated with an object and called using dot nota-
tion.

object: Something a variable can refer to. For now, you can use “object” and
“value” interchangeably.

search: A pattern of traversal that stops when it �nds what it is looking for.

sequence:An ordered set; that is, a set of values where each value is identi�ed
by an integer index.

slice: A part of a string speci�ed by a range of indices.

traverse: To iterate through the items in a sequence, performing a similar opera-
tion on each.

6.14. Exercises 77

6.14 Exercises

Exercise 6.5Take the following Python code that stores a string:`

str = � X-DSPAM-Confidence: 0.8475�

Use find and string slicing to extract the portion of the string after the colon
character and then use thefloat function to convert the extracted string into a
�oating point number.

Exercise 6.6Read the documentation of the string methods athttps://docs.
python.org/2/library/stdtypes.html#string-methods . You might want
to experiment with some of them to make sure you understand how they work.
strip andreplace are particularly useful.

The documentation uses a syntax that might be confusing. For example, in
find(sub[, start[, end]]) , the brackets indicate optional arguments. Sosub
is required, butstart is optional, and if you includestart , thenend is optional.

78 Chapter 6. Strings

Chapter 7

Files

7.1 Persistence

So far, we have learned how to write programs and communicate our intentions
to theCentral Processing Unitusing conditional execution, functions, and itera-
tions. We have learned how to create and use data structures in theMain Memory .
The CPU and memory are where our software works and runs. It is where all of
the “thinking” happens.

But if you recall from our hardware architecture discussions, once the power is
turned off, anything stored in either the CPU or main memory is erased. So up to
now, our programs have just been transient fun exercises to learn Python.

Unit

Main
Memory Secondary

Memory

Network
Input

Software

Output
Devices

Central
Processing

In this chapter, we start to work withSecondary Memory(or �les). Secondary
memory is not erased even when the power is turned off. Or in the case of aUSB
�ash drive, the data we write from our programs can be removed from thesystem
and transported to another system.

80 Chapter 7. Files

We will primarily focus on reading and writing text �les such as those we create
in a text editor. Later we will see how to work with database �les which are binary
�les, speci�cally designed to be read and written through database software.

7.2 Opening �les

When we want to read or write a �le (say on your hard drive), we �rst must open
the �le. Opening the �le communicates with your operating system, which knows
where the data for each �le is stored. When you open a �le, you are asking the
operating system to �nd the �le by name and make sure the �le exists. In this
example, we open the �lembox.txt , which should be stored in the same folder
that you are in when you start Python. You can download this �le fromwww.
py4inf.com/code/mbox.txt

>>> fhand = open(� mbox.txt �)
>>> print fhand
<open file � mbox.txt � , mode � r � at 0x1005088b0>

If the open is successful, the operating system returns us a�le handle . The �le
handle is not the actual data contained in the �le, but instead it is a “handle” that
we can use to read the data. You are given a handle if the requested �le exists and
you have the proper permissions to read the �le.

�
�
�
�
�
�

��	

�
��
�

��������
����
����
��	
�
����

�����
���������
��
������
�������
��
�����
����������
����������������
������
��������
�� !��
��"�#�	$���
��
�	����

��%���
���

If the �le does not exist,open will fail with a traceback and you will not get a
handle to access the contents of the �le:

>>> fhand = open(� stuff.txt �)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory: � stuff.txt �

Later we will usetry andexcept to deal more gracefully with the situation where
we attempt to open a �le that does not exist.

7.3. Text �les and lines 81

7.3 Text �les and lines

A text �le can be thought of as a sequence of lines, much like a Python stringcan
be thought of as a sequence of characters. For example, this is a sample of a text
�le which records mail activity from various individuals in an open sourceproject
development team:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>
Date: Sat, 5 Jan 2008 09:12:18 -0500
To: source@collab.sakaiproject.org
From: stephen.marquard@uct.ac.za
Subject: [sakai] svn commit: r39772 - content/branches/
Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772
...

The entire �le of mail interactions is available fromwww.py4inf.com/code/
mbox.txt and a shortened version of the �le is available fromwww.py4inf.com/
code/mbox-short.txt . These �les are in a standard format for a �le containing
multiple mail messages. The lines which start with “From ” separate the mes-
sages and the lines which start with “From:” are part of the messages. For more
information about the mbox format, seeen.wikipedia.org/wiki/Mbox .

To break the �le into lines, there is a special character that represents the“end of
the line” called thenewlinecharacter.

In Python, we represent thenewlinecharacter as a backslash-n in string constants.
Even though this looks like two characters, it is actually a single character. When
we look at the variable by entering “stuff” in the interpreter, it shows us the\n
in the string, but when we useprint to show the string, we see the string broken
into two lines by the newline character.

>>> stuff = � Hello\nWorld! �
>>> stuff
� Hello\nWorld! �
>>> print stuff
Hello
World!
>>> stuff = � X\nY �
>>> print stuff
X
Y
>>> len(stuff)
3

You can also see that the length of the string� X\nY � is threecharacters because
the newline character is a single character.

So when we look at the lines in a �le, we need toimaginethat there is a special
invisible character called the newline at the end of each line that marks the endof
the line.

So the newline character separates the characters in the �le into lines.

82 Chapter 7. Files

7.4 Reading �les

While the �le handle does not contain the data for the �le, it is quite easy to
construct afor loop to read through and count each of the lines in a �le:

fhand = open(� mbox.txt �)
count = 0
for line in fhand:

count = count + 1
print � Line Count: � , count

python open.py
Line Count: 132045

We can use the �le handle as the sequence in ourfor loop. Ourfor loop simply
counts the number of lines in the �le and prints them out. The rough translation
of the for loop into English is, “for each line in the �le represented by the �le
handle, add one to thecount variable.”

The reason that theopen function does not read the entire �le is that the �le might
be quite large with many gigabytes of data. Theopen statement takes the same
amount of time regardless of the size of the �le. Thefor loop actually causes the
data to be read from the �le.

When the �le is read using afor loop in this manner, Python takes care of splitting
the data in the �le into separate lines using the newline character. Python reads
each line through the newline and includes the newline as the last character inthe
line variable for each iteration of thefor loop.

Because thefor loop reads the data one line at a time, it can ef�ciently read and
count the lines in very large �les without running out of main memory to store
the data. The above program can count the lines in any size �le using verylittle
memory since each line is read, counted, and then discarded.

If you know the �le is relatively small compared to the size of your main memory,
you can read the whole �le into one string using theread method on the �le
handle.

>>> fhand = open(� mbox-short.txt �)
>>> inp = fhand.read()
>>> print len(inp)
94626
>>> print inp[:20]
From stephen.marquar

In this example, the entire contents (all 94,626 characters) of the �le
mbox-short.txt are read directly into the variableinp . We use string slicing
to print out the �rst 20 characters of the string data stored ininp .

When the �le is read in this manner, all the characters including all of the lines
and newline characters are one big string in the variableinp. Remember that this

7.5. Searching through a �le 83

form of theopen function should only be used if the �le data will �t comfortably
in the main memory of your computer.

If the �le is too large to �t in main memory, you should write your program to
read the �le in chunks using afor or while loop.

7.5 Searching through a �le

When you are searching through data in a �le, it is a very common pattern to read
through a �le, ignoring most of the lines and only processing lines which meet
a particular condition. We can combine the pattern for reading a �le with string
methods to build simple search mechanisms.

For example, if we wanted to read a �le and only print out lines which started with
the pre�x “From:”, we could use the string methodstartswith to select only those
lines with the desired pre�x:

fhand = open(� mbox-short.txt �)
for line in fhand:

if line.startswith(� From: �) :
print line

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu
...

The output looks great since the only lines we are seeing are those which start with
“From:”, but why are we seeing the extra blank lines? This is due to that invisible
newline character. Each of the lines ends with a newline, so theprint statement
prints the string in the variableline which includes a newline and thenprint adds
anothernewline, resulting in the double spacing effect we see.

We could use line slicing to print all but the last character, but a simpler approach
is to use therstrip method which strips whitespace from the right side of a string
as follows:

fhand = open(� mbox-short.txt �)
for line in fhand:

line = line.rstrip()
if line.startswith(� From: �) :

print line

When this program runs, we get the following output:

84 Chapter 7. Files

From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zqian@umich.edu
From: rjlowe@iupui.edu
From: zqian@umich.edu
From: rjlowe@iupui.edu
From: cwen@iupui.edu
...

As your �le processing programs get more complicated, you may want to structure
your search loops usingcontinue . The basic idea of the search loop is that you
are looking for “interesting” lines and effectively skipping “uninteresting” lines.
And then when we �nd an interesting line, we do something with that line.

We can structure the loop to follow the pattern of skipping uninteresting lines as
follows:

fhand = open(� mbox-short.txt �)
for line in fhand:

line = line.rstrip()
Skip � uninteresting lines �
if not line.startswith(� From: �) :

continue
Process our � interesting � line
print line

The output of the program is the same. In English, the uninteresting lines are
those which do not start with “From:”, which we skip usingcontinue . For the
“interesting” lines (i.e., those that start with “From:”) we perform the processing
on those lines.

We can use thefind string method to simulate a text editor search that �nds lines
where the search string is anywhere in the line. Sincefind looks for an occurrence
of a string within another string and either returns the position of the string or -1
if the string was not found, we can write the following loop to show lines which
contain the string “@uct.ac.za” (i.e., they come from the University of Cape Town
in South Africa):

fhand = open(� mbox-short.txt �)
for line in fhand:

line = line.rstrip()
if line.find(� @uct.ac.za �) == -1 :

continue
print line

Which produces the following output:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
X-Authentication-Warning: set sender to stephen.marquar d@uct.ac.za using -f
From: stephen.marquard@uct.ac.za
Author: stephen.marquard@uct.ac.za
From david.horwitz@uct.ac.za Fri Jan 4 07:02:32 2008
X-Authentication-Warning: set sender to david.horwitz@u ct.ac.za using -f

7.6. Letting the user choose the �le name 85

From: david.horwitz@uct.ac.za
Author: david.horwitz@uct.ac.za
...

7.6 Letting the user choose the �le name

We really do not want to have to edit our Python code every time we want to
process a different �le. It would be more usable to ask the user to enter the �le
name string each time the program runs so they can use our program on different
�les without changing the Python code.

This is quite simple to do by reading the �le name from the user usingraw_input
as follows:

fname = raw_input(� Enter the file name: �)
fhand = open(fname)
count = 0
for line in fhand:

if line.startswith(� Subject: �) :
count = count + 1

print � There were � , count, � subject lines in � , fname

We read the �le name from the user and place it in a variable namedfname and
open that �le. Now we can run the program repeatedly on different �les.

python search6.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

python search6.py
Enter the file name: mbox-short.txt
There were 27 subject lines in mbox-short.txt

Before peeking at the next section, take a look at the above program and ask
yourself, “What could go possibly wrong here?” or “What might our friendly user
do that would cause our nice little program to ungracefully exit with a traceback,
making us look not-so-cool in the eyes of our users?”

7.7 Usingtry, except, and open

I told you not to peek. This is your last chance.

What if our user types something that is not a �le name?

python search6.py
Enter the file name: missing.txt
Traceback (most recent call last):

File "search6.py", line 2, in <module>
fhand = open(fname)

IOError: [Errno 2] No such file or directory: � missing.txt �

86 Chapter 7. Files

python search6.py
Enter the file name: na na boo boo
Traceback (most recent call last):

File "search6.py", line 2, in <module>
fhand = open(fname)

IOError: [Errno 2] No such file or directory: � na na boo boo �

Do not laugh, users will eventually do every possible thing they can do to break
your programs—either on purpose or with malicious intent. As a matter of fact,
an important part of any software development team is a person or groupcalled
Quality Assurance(or QA for short) whose very job it is to do the craziest things
possible in an attempt to break the software that the programmer has created.

The QA team is responsible for �nding the �aws in programs before we have
delivered the program to the end users who may be purchasing the software or
paying our salary to write the software. So the QA team is the programmer's best
friend.

So now that we see the �aw in the program, we can elegantly �x it using the
try /except structure. We need to assume that theopen call might fail and add
recovery code when theopen fails as follows:

fname = raw_input(� Enter the file name: �)
try:

fhand = open(fname)
except:

print � File cannot be opened: � , fname
exit()

count = 0
for line in fhand:

if line.startswith(� Subject: �) :
count = count + 1

print � There were � , count, � subject lines in � , fname

Theexit function terminates the program. It is a function that we call that never
returns. Now when our user (or QA team) types in silliness or bad �le names,we
“catch” them and recover gracefully:

python search7.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

python search7.py
Enter the file name: na na boo boo
File cannot be opened: na na boo boo

Protecting theopen call is a good example of the proper use oftry andexcept in
a Python program. We use the term “Pythonic” when we are doing something the
“Python way”. We might say that the above example is the Pythonic way to open
a �le.

7.8. Writing �les 87

Once you become more skilled in Python, you can engage in repartee with other
Python programmers to decide which of two equivalent solutions to a problem
is “more Pythonic”. The goal to be “more Pythonic” captures the notion that
programming is part engineering and part art. We are not always interested in
just making something work, we also want our solution to be elegant and to be
appreciated as elegant by our peers.

7.8 Writing �les

To write a �le, you have to open it with mode� w� as a second parameter:

>>> fout = open(� output.txt � , � w�)
>>> print fout
<open file � output.txt � , mode � w� at 0xb7eb2410>

If the �le already exists, opening it in write mode clears out the old data and starts
fresh, so be careful! If the �le doesn't exist, a new one is created.

Thewrite method of the �le handle object puts data into the �le.

>>> line1 = "This here � s the wattle,\n"
>>> fout.write(line1)

Again, the �le object keeps track of where it is, so if you callwrite again, it adds
the new data to the end.

We must make sure to manage the ends of lines as we write to the �le by explicitly
inserting the newline character when we want to end a line. Theprint statement
automatically appends a newline, but thewrite method does not add the newline
automatically.

>>> line2 = � the emblem of our land.\n �
>>> fout.write(line2)

When you are done writing, you have to close the �le to make sure that the lastbit
of data is physically written to the disk so it will not be lost if the power goes off.

>>> fout.close()

We could close the �les which we open for read as well, but we can be a little
sloppy if we are only opening a few �les since Python makes sure that all open
�les are closed when the program ends. When we are writing �les, we want to
explicitly close the �les so as to leave nothing to chance.

7.9 Debugging

When you are reading and writing �les, you might run into problems with whites-
pace. These errors can be hard to debug because spaces, tabs, and newlines are
normally invisible:

88 Chapter 7. Files

>>> s = � 1 2\t 3\n 4 �
>>> print s
1 2 3

4

The built-in functionrepr can help. It takes any object as an argument and re-
turns a string representation of the object. For strings, it represents whitespace
characters with backslash sequences:

>>> print repr(s)
� 1 2\t 3\n 4 �

This can be helpful for debugging.

One other problem you might run into is that different systems use different char-
acters to indicate the end of a line. Some systems use a newline, represented\n .
Others use a return character, represented\r . Some use both. If you move �les
between different systems, these inconsistencies might cause problems.

For most systems, there are applications to convert from one format to another.
You can �nd them (and read more about this issue) atwikipedia.org/wiki/
Newline . Or, of course, you could write one yourself.

7.10 Glossary

catch: To prevent an exception from terminating a program using thetry and
except statements.

newline: A special character used in �les and strings to indicate the end of a line.

Pythonic: A technique that works elegantly in Python. “Using try and except is
thePythonicway to recover from missing �les”.

Quality Assurance: A person or team focused on insuring the overall quality of a
software product. QA is often involved in testing a product and identifying
problems before the product is released.

text �le: A sequence of characters stored in permanent storage like a hard drive.

7.11 Exercises

Exercise 7.1Write a program to read through a �le and print the contents of the
�le (line by line) all in upper case. Executing the program will look as follows:

python shout.py
Enter a file name: mbox-short.txt
FROM STEPHEN.MARQUARD@UCT.AC.ZA SAT JAN 5 09:14:16 2008
RETURN-PATH: <POSTMASTER@COLLAB.SAKAIPROJECT.ORG>

7.11. Exercises 89

RECEIVED: FROM MURDER (MAIL.UMICH.EDU [141.211.14.90])
BY FRANKENSTEIN.MAIL.UMICH.EDU (CYRUS V2.3.8) WITH LMTPA;
SAT, 05 JAN 2008 09:14:16 -0500

You can download the �le fromwww.py4inf.com/code/mbox-short.txt

Exercise 7.2Write a program to prompt for a �le name, and then read through
the �le and look for lines of the form:

X-DSPAM-Confidence: 0.8475

When you encounter a line that starts with “X-DSPAM-Con�dence:” pull apart
the line to extract the �oating-point number on the line. Count these lines and
then compute the total of the spam con�dence values from these lines. Whenyou
reach the end of the �le, print out the average spam con�dence.

Enter the file name: mbox.txt
Average spam confidence: 0.894128046745

Enter the file name: mbox-short.txt
Average spam confidence: 0.750718518519

Test your �le on thembox.txt andmbox-short.txt �les.

Exercise 7.3Sometimes when programmers get bored or want to have a bit of fun,
they add a harmlessEaster Egg to their program (en.wikipedia.org/wiki/
Easter_egg_(media)). Modify the program that prompts the user for the �le
name so that it prints a funny message when the user types in the exact �le name
“na na boo boo”. The program should behave normally for all other �leswhich
exist and don't exist. Here is a sample execution of the program:

python egg.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

python egg.py
Enter the file name: missing.tyxt
File cannot be opened: missing.tyxt

python egg.py
Enter the file name: na na boo boo
NA NA BOO BOO TO YOU - You have been punk� d!

We are not encouraging you to put Easter Eggs in your programs—this is just an
exercise.

90 Chapter 7. Files

Chapter 8

Lists

8.1 A list is a sequence

Like a string, alist is a sequence of values. In a string, the values are characters;
in a list, they can be any type. The values in list are calledelementsor sometimes
items.

There are several ways to create a new list; the simplest is to enclose the elements
in square brackets ([and]):

[10, 20, 30, 40]
[� crunchy frog � , � ram bladder � , � lark vomit �]

The �rst example is a list of four integers. The second is a list of three strings.
The elements of a list don't have to be the same type. The following list contains
a string, a �oat, an integer, and (lo!) another list:

[� spam� , 2.0, 5, [10, 20]]

A list within another list isnested.

A list that contains no elements is called an empty list; you can create one with
empty brackets,[] .

As you might expect, you can assign list values to variables:

>>> cheeses = [� Cheddar � , � Edam� , � Gouda�]
>>> numbers = [17, 123]
>>> empty = []
>>> print cheeses, numbers, empty
[� Cheddar � , � Edam� , � Gouda�] [17, 123] []

8.2 Lists are mutable

The syntax for accessing the elements of a list is the same as for accessing the
characters of a string—the bracket operator. The expression inside the brackets
speci�es the index. Remember that the indices start at 0:

92 Chapter 8. Lists

>>> print cheeses[0]
Cheddar

Unlike strings, lists are mutable because you can change the order of items in a
list or reassign an item in a list. When the bracket operator appears on the left side
of an assignment, it identi�es the element of the list that will be assigned.

>>> numbers = [17, 123]
>>> numbers[1] = 5
>>> print numbers
[17, 5]

The one-eth element ofnumbers , which used to be 123, is now 5.

You can think of a list as a relationship between indices and elements. This rela-
tionship is called amapping; each index “maps to” one of the elements.

List indices work the same way as string indices:

• Any integer expression can be used as an index.

• If you try to read or write an element that does not exist, you get an
IndexError .

• If an index has a negative value, it counts backward from the end of the list.

Thein operator also works on lists.

>>> cheeses = [� Cheddar � , � Edam� , � Gouda�]
>>> � Edam� in cheeses
True
>>> � Brie � in cheeses
False

8.3 Traversing a list

The most common way to traverse the elements of a list is with afor loop. The
syntax is the same as for strings:

for cheese in cheeses:
print cheese

This works well if you only need to read the elements of the list. But if you want
to write or update the elements, you need the indices. A common way to do that
is to combine the functionsrange andlen :

for i in range(len(numbers)):
numbers[i] = numbers[i] * 2

8.4. List operations 93

This loop traverses the list and updates each element.len returns the number of
elements in the list.range returns a list of indices from 0 ton� 1, wheren is the
length of the list. Each time through the loop,i gets the index of the next element.
The assignment statement in the body usesi to read the old value of the element
and to assign the new value.

A for loop over an empty list never executes the body:

for x in empty:
print � This never happens. �

Although a list can contain another list, the nested list still counts as a single
element. The length of this list is four:

[� spam� , 1, [� Brie � , � Roquefort � , � Pol le Veq �], [1, 2, 3]]

8.4 List operations

The+ operator concatenates lists:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print c
[1, 2, 3, 4, 5, 6]

Similarly, the* operator repeats a list a given number of times:

>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

The �rst example repeats[0] four times. The second example repeats the list[1,
2, 3] three times.

8.5 List slices

The slice operator also works on lists:

>>> t = [� a� , � b� , � c� , � d� , � e� , � f �]
>>> t[1:3]
[� b� , � c�]
>>> t[:4]
[� a� , � b� , � c� , � d�]
>>> t[3:]
[� d� , � e� , � f �]

If you omit the �rst index, the slice starts at the beginning. If you omit the second,
the slice goes to the end. So if you omit both, the slice is a copy of the whole list.

94 Chapter 8. Lists

>>> t[:]
[� a� , � b� , � c� , � d� , � e� , � f �]

Since lists are mutable, it is often useful to make a copy before performing opera-
tions that fold, spindle, or mutilate lists.

A slice operator on the left side of an assignment can update multiple elements:

>>> t = [� a� , � b� , � c� , � d� , � e� , � f �]
>>> t[1:3] = [� x� , � y�]
>>> print t
[� a� , � x� , � y� , � d� , � e� , � f �]

8.6 List methods

Python provides methods that operate on lists. For example,append adds a new
element to the end of a list:

>>> t = [� a� , � b� , � c�]
>>> t.append(� d�)
>>> print t
[� a� , � b� , � c� , � d�]

extend takes a list as an argument and appends all of the elements:

>>> t1 = [� a� , � b� , � c�]
>>> t2 = [� d� , � e�]
>>> t1.extend(t2)
>>> print t1
[� a� , � b� , � c� , � d� , � e�]

This example leavest2 unmodi�ed.

sort arranges the elements of the list from low to high:

>>> t = [� d� , � c� , � e� , � b� , � a�]
>>> t.sort()
>>> print t
[� a� , � b� , � c� , � d� , � e�]

Most list methods are void; they modify the list and returnNone. If you acciden-
tally write t = t.sort() , you will be disappointed with the result.

8.7 Deleting elements

There are several ways to delete elements from a list. If you know the indexof the
element you want, you can usepop:

8.8. Lists and functions 95

>>> t = [� a� , � b� , � c�]
>>> x = t.pop(1)
>>> print t
[� a� , � c�]
>>> print x
b

pop modi�es the list and returns the element that was removed. If you don't
provide an index, it deletes and returns the last element.

If you don't need the removed value, you can use thedel operator:

>>> t = [� a� , � b� , � c�]
>>> del t[1]
>>> print t
[� a� , � c�]

If you know the element you want to remove (but not the index), you can use
remove :

>>> t = [� a� , � b� , � c�]
>>> t.remove(� b�)
>>> print t
[� a� , � c�]

The return value fromremove is None.

To remove more than one element, you can usedel with a slice index:

>>> t = [� a� , � b� , � c� , � d� , � e� , � f �]
>>> del t[1:5]
>>> print t
[� a� , � f �]

As usual, the slice selects all the elements up to, but not including, the second
index.

8.8 Lists and functions

There are a number of built-in functions that can be used on lists that allow you to
quickly look through a list without writing your own loops:

>>> nums = [3, 41, 12, 9, 74, 15]
>>> print len(nums)
6
>>> print max(nums)
74
>>> print min(nums)
3
>>> print sum(nums)
154
>>> print sum(nums)/len(nums)
25

96 Chapter 8. Lists

The sum() function only works when the list elements are numbers. The other
functions (max() , len() , etc.) work with lists of strings and other types that can
be comparable.

We could rewrite an earlier program that computed the average of a list of numbers
entered by the user using a list.

First, the program to compute an average without a list:

total = 0
count = 0
while (True) :

inp = raw_input(� Enter a number: �)
if inp == � done � : break
value = float(inp)
total = total + value
count = count + 1

average = total / count
print � Average: � , average

In this program, we havecount and total variables to keep the number and
running total of the user's numbers as we repeatedly prompt the user fora number.

We could simply remember each number as the user entered it and use built-in
functions to compute the sum and count at the end.

numlist = list()
while (True) :

inp = raw_input(� Enter a number: �)
if inp == � done � : break
value = float(inp)
numlist.append(value)

average = sum(numlist) / len(numlist)
print � Average: � , average

We make an empty list before the loop starts, and then each time we have a number,
we append it to the list. At the end of the program, we simply compute the sum of
the numbers in the list and divide it by the count of the numbers in the list to come
up with the average.

8.9 Lists and strings

A string is a sequence of characters and a list is a sequence of values, but a list
of characters is not the same as a string. To convert from a string to a list of
characters, you can uselist :

>>> s = � spam�
>>> t = list(s)
>>> print t
[� s� , � p� , � a� , � m�]

8.10. Parsing lines 97

Becauselist is the name of a built-in function, you should avoid using it as a
variable name. I also avoid the letterl because it looks too much like the number
1. So that's why I uset .

The list function breaks a string into individual letters. If you want to break a
string into words, you can use thesplit method:

>>> s = � pining for the fjords �
>>> t = s.split()
>>> print t
[� pining � , � for � , � the � , � fjords �]
>>> print t[2]
the

Once you have usedsplit to break the string into a list of words, you can use the
index operator (square bracket) to look at a particular word in the list.

You can callsplit with an optional argument called adelimiter that speci�es
which characters to use as word boundaries. The following example usesa hyphen
as a delimiter:

>>> s = � spam-spam-spam �
>>> delimiter = � - �
>>> s.split(delimiter)
[� spam� , � spam� , � spam�]

join is the inverse ofsplit . It takes a list of strings and concatenates the ele-
ments.join is a string method, so you have to invoke it on the delimiter and pass
the list as a parameter:

>>> t = [� pining � , � for � , � the � , � fjords �]
>>> delimiter = � �
>>> delimiter.join(t)
� pining for the fjords �

In this case the delimiter is a space character, sojoin puts a space between words.
To concatenate strings without spaces, you can use the empty string,�� , as a
delimiter.

8.10 Parsing lines

Usually when we are reading a �le we want to do something to the lines other than
just printing the whole line. Often we want to �nd the “interesting lines” and then
parsethe line to �nd some interestingpart of the line. What if we wanted to print
out the day of the week from those lines that start with “From ”?

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

The split method is very effective when faced with this kind of problem. We
can write a small program that looks for lines where the line starts with “From ”,
split those lines, and then print out the third word in the line:

98 Chapter 8. Lists

fhand = open(� mbox-short.txt �)
for line in fhand:

line = line.rstrip()
if not line.startswith(� From �) : continue
words = line.split()
print words[2]

Here we also use the contracted form of theif statement where we put the
continue on the same line as theif . This contracted form of theif functions
the same as if thecontinue were on the next line and indented.

The program produces the following output:

Sat
Fri
Fri
Fri

...

Later, we will learn increasingly sophisticated techniques for picking the lines to
work on and how we pull those lines apart to �nd the exact bit of informationwe
are looking for.

8.11 Objects and values

If we execute these assignment statements:

a = � banana �
b = � banana �

we know thata andb both refer to a string, but we don't know whether they refer
to thesamestring. There are two possible states:

a

b
'banana'

a

b

'banana'

'banana'

In one case,a andb refer to two different objects that have the same value. In the
second case, they refer to the same object.

To check whether two variables refer to the same object, you can use theis oper-
ator.

>>> a = � banana �
>>> b = � banana �
>>> a is b
True

In this example, Python only created one string object, and botha andb refer to it.

But when you create two lists, you get two objects:

8.12. Aliasing 99

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False

In this case we would say that the two lists areequivalent, because they have the
same elements, but notidentical, because they are not the same object. If two
objects are identical, they are also equivalent, but if they are equivalent,they are
not necessarily identical.

Until now, we have been using “object” and “value” interchangeably, but it is more
precise to say that an object has a value. If you executea = [1,2,3] , a refers to
a list object whose value is a particular sequence of elements. If another list has
the same elements, we would say it has the same value.

8.12 Aliasing

If a refers to an object and you assignb = a, then both variables refer to the same
object:

>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True

The association of a variable with an object is called areference. In this example,
there are two references to the same object.

An object with more than one reference has more than one name, so we say that
the object isaliased.

If the aliased object is mutable, changes made with one alias affect the other:

>>> b[0] = 17
>>> print a
[17, 2, 3]

Although this behavior can be useful, it is error-prone. In general, it issafer to
avoid aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this
example:

a = � banana �
b = � banana �

it almost never makes a difference whethera andb refer to the same string or not.

100 Chapter 8. Lists

8.13 List arguments

When you pass a list to a function, the function gets a reference to the list. If
the function modi�es a list parameter, the caller sees the change. For example,
delete_head removes the �rst element from a list:

def delete_head(t):
del t[0]

Here's how it is used:

>>> letters = [� a� , � b� , � c�]
>>> delete_head(letters)
>>> print letters
[� b� , � c�]

The parametert and the variableletters are aliases for the same object.

It is important to distinguish between operations that modify lists and operations
that create new lists. For example, theappend method modi�es a list, but the+
operator creates a new list:

>>> t1 = [1, 2]
>>> t2 = t1.append(3)
>>> print t1
[1, 2, 3]
>>> print t2
None

>>> t3 = t1 + [3]
>>> print t3
[1, 2, 3]
>>> t2 is t3
False

This difference is important when you write functions that are supposed tomodify
lists. For example, this functiondoes notdelete the head of a list:

def bad_delete_head(t):
t = t[1:] # WRONG!

The slice operator creates a new list and the assignment makest refer to it, but
none of that has any effect on the list that was passed as an argument.

An alternative is to write a function that creates and returns a new list. For exam-
ple, tail returns all but the �rst element of a list:

def tail(t):
return t[1:]

This function leaves the original list unmodi�ed. Here's how it is used:

>>> letters = [� a� , � b� , � c�]
>>> rest = tail(letters)
>>> print rest
[� b� , � c�]

8.14. Debugging 101

Exercise 8.1Write a function calledchop that takes a list and modi�es it, remov-
ing the �rst and last elements, and returnsNone.

Then write a function calledmiddle that takes a list and returns a new list that
contains all but the �rst and last elements.

8.14 Debugging

Careless use of lists (and other mutable objects) can lead to long hours of debug-
ging. Here are some common pitfalls and ways to avoid them:

1. Don't forget that most list methods modify the argument and returnNone.
This is the opposite of the string methods, which return a new string and
leave the original alone.

If you are used to writing string code like this:

word = word.strip()

It is tempting to write list code like this:

t = t.sort() # WRONG!

Becausesort returnsNone, the next operation you perform witht is likely
to fail.

Before using list methods and operators, you should read the documen-
tation carefully and then test them in interactive mode. The meth-
ods and operators that lists share with other sequences (like strings)
are documented athttps://docs.python.org/2/library/stdtypes.
html#string-methods . The methods and operators that only apply
to mutable sequences are documented athttps://docs.python.org/2/
library/stdtypes.html#mutable-sequence-types .

2. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many ways to do things.
For example, to remove an element from a list, you can usepop, remove ,
del , or even a slice assignment.

To add an element, you can use theappend method or the+ operator. But
don't forget that these are right:

t.append(x)
t = t + [x]

And these are wrong:

t.append([x]) # WRONG!
t = t.append(x) # WRONG!
t + [x] # WRONG!
t = t + x # WRONG!

102 Chapter 8. Lists

Try out each of these examples in interactive mode to make sure you under-
stand what they do. Notice that only the last one causes a runtime error; the
other three are legal, but they do the wrong thing.

3. Make copies to avoid aliasing.

If you want to use a method likesort that modi�es the argument, but you
need to keep the original list as well, you can make a copy.

orig = t[:]
t.sort()

In this example you could also use the built-in functionsorted , which re-
turns a new, sorted list and leaves the original alone. But in that case you
should avoid usingsorted as a variable name!

4. Lists,split , and �les

When we read and parse �les, there are many opportunities to encounter
input that can crash our program so it is a good idea to revisit theguardian
pattern when it comes writing programs that read through a �le and look for
a “needle in the haystack”.

Let's revisit our program that is looking for the day of the week on the from
lines of our �le:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Since we are breaking this line into words, we could dispense with the use
of startswith and simply look at the �rst word of the line to determine if
we are interested in the line at all. We can usecontinue to skip lines that
don't have “From” as the �rst word as follows:

fhand = open(� mbox-short.txt �)
for line in fhand:

words = line.split()
if words[0] != � From� : continue
print words[2]

This looks much simpler and we don't even need to do therstrip to remove
the newline at the end of the �le. But is it better?

python search8.py
Sat
Traceback (most recent call last):

File "search8.py", line 5, in <module>
if words[0] != � From� : continue

IndexError: list index out of range

It kind of works and we see the day from the �rst line (Sat), but then the
program fails with a traceback error. What went wrong? What messed-up
data caused our elegant, clever, and very Pythonic program to fail?

8.14. Debugging 103

You could stare at it for a long time and puzzle through it or ask someone
for help, but the quicker and smarter approach is to add aprint statement.
The best place to add the print statement is right before the line where the
program failed and print out the data that seems to be causing the failure.

Now this approach may generate a lot of lines of output, but at least you will
immediately have some clue as to the problem at hand. So we add a print of
the variablewords right before line �ve. We even add a pre�x “Debug:” to
the line so we can keep our regular output separate from our debug output.

for line in fhand:
words = line.split()
print � Debug: � , words
if words[0] != � From� : continue
print words[2]

When we run the program, a lot of output scrolls off the screen but at the
end, we see our debug output and the traceback so we know what happened
just before the traceback.

Debug: [� X-DSPAM-Confidence: � , � 0.8475 �]
Debug: [� X-DSPAM-Probability: � , � 0.0000 �]
Debug: []
Traceback (most recent call last):

File "search9.py", line 6, in <module>
if words[0] != � From� : continue

IndexError: list index out of range

Each debug line is printing the list of words which we get when wesplit
the line into words. When the program fails, the list of words is empty[] .
If we open the �le in a text editor and look at the �le, at that point it looks
as follows:

X-DSPAM-Result: Innocent
X-DSPAM-Processed: Sat Jan 5 09:14:16 2008
X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772

The error occurs when our program encounters a blank line! Of course there
are “zero words” on a blank line. Why didn't we think of that when we were
writing the code? When the code looks for the �rst word (word[0]) to check
to see if it matches “From”, we get an “index out of range” error.

This of course is the perfect place to add someguardian code to avoid
checking the �rst word if the �rst word is not there. There are many ways
to protect this code; we will choose to check the number of words we have
before we look at the �rst word:

104 Chapter 8. Lists

fhand = open(� mbox-short.txt �)
count = 0
for line in fhand:

words = line.split()
print � Debug: � , words
if len(words) == 0 : continue
if words[0] != � From� : continue
print words[2]

First we commented out the debug print statement instead of removing it,
in case our modi�cation fails and we need to debug again. Then we added
a guardian statement that checks to see if we have zero words, and if so,we
usecontinue to skip to the next line in the �le.

We can think of the twocontinue statements as helping us re�ne the set of
lines which are “interesting” to us and which we want to process some more.
A line which has no words is “uninteresting” to us so we skip to the next
line. A line which does not have “From” as its �rst word is uninteresting to
us so we skip it.

The program as modi�ed runs successfully, so perhaps it is correct. Our
guardian statement does make sure that thewords[0] will never fail, but
perhaps it is not enough. When we are programming, we must always be
thinking, “What might go wrong?”

Exercise 8.2Figure out which line of the above program is still not properly
guarded. See if you can construct a text �le which causes the programto
fail and then modify the program so that the line is properly guarded and
test it to make sure it handles your new text �le.

Exercise 8.3Rewrite the guardian code in the above example without two
if statements. Instead, use a compound logical expression using theand
logical operator with a singleif statement.

8.15 Glossary

aliasing: A circumstance where two or more variables refer to the same object.

delimiter: A character or string used to indicate where a string should be split.

element: One of the values in a list (or other sequence); also called items.

equivalent: Having the same value.

index: An integer value that indicates an element in a list.

identical: Being the same object (which implies equivalence).

list: A sequence of values.

8.16. Exercises 105

list traversal: The sequential accessing of each element in a list.

nested list: A list that is an element of another list.

object: Something a variable can refer to. An object has a type and a value.

reference: The association between a variable and its value.

8.16 Exercises

Exercise 8.4Download a copy of the �le fromwww.py4inf.com/code/romeo.
txt

Write a program to open the �leromeo.txt and read it line by line. For each line,
split the line into a list of words using thesplit function.

For each word, check to see if the word is already in a list. If the word is notin the
list, add it to the list.

When the program completes, sort and print the resulting words in alphabetical
order.

Enter file: romeo.txt
[� Arise � , � But � , � It � , � Juliet � , � Who� , � already � ,
� and � , � breaks � , � east � , � envious � , � fair � , � grief � ,
� is � , � kill � , � light � , � moon� , � pale � , � sick � , � soft � ,
� sun � , � the � , � through � , � what � , � window � ,
� with � , � yonder �]

Exercise 8.5Write a program to read through the mail box data and when you
�nd line that starts with “From”, you will split the line into words using thesplit
function. We are interested in who sent the message, which is the second word on
the From line.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

You will parse the From line and print out the second word for each Fromline,
then you will also count the number of From (not From:) lines and print out a
count at the end.

This is a good sample output with a few lines removed:

python fromcount.py
Enter a file name: mbox-short.txt
stephen.marquard@uct.ac.za
louis@media.berkeley.edu
zqian@umich.edu

[...some output removed...]

ray@media.berkeley.edu

106 Chapter 8. Lists

cwen@iupui.edu
cwen@iupui.edu
cwen@iupui.edu
There were 27 lines in the file with From as the first word

Exercise 8.6Rewrite the program that prompts the user for a list of numbers and
prints out the maximum and minimum of the numbers at the end when the user
enters “done”. Write the program to store the numbers the user enters in a list
and use themax() andmin() functions to compute the maximum and minimum
numbers after the loop completes.

Enter a number: 6
Enter a number: 2
Enter a number: 9
Enter a number: 3
Enter a number: 5
Enter a number: done
Maximum: 9.0
Minimum: 2.0

Chapter 9

Dictionaries

A dictionary is like a list, but more general. In a list, the index positions have to
be integers; in a dictionary, the indices can be (almost) any type.

You can think of a dictionary as a mapping between a set of indices (which are
calledkeys) and a set of values. Each key maps to a value. The association of a
key and a value is called akey-value pair or sometimes anitem.

As an example, we'll build a dictionary that maps from English to Spanish words,
so the keys and the values are all strings.

The functiondict creates a new dictionary with no items. Becausedict is the
name of a built-in function, you should avoid using it as a variable name.

>>> eng2sp = dict()
>>> print eng2sp
{}

The curly brackets,{} , represent an empty dictionary. To add items to the dictio-
nary, you can use square brackets:

>>> eng2sp[� one �] = � uno �

This line creates an item that maps from the key'one' to the value� uno � . If we
print the dictionary again, we see a key-value pair with a colon between the key
and value:

>>> print eng2sp
{ � one � : � uno � }

This output format is also an input format. For example, you can create a new
dictionary with three items:

>>> eng2sp = { � one � : � uno � , � two � : � dos � , � three � : � tres � }

But if you print eng2sp , you might be surprised:

108 Chapter 9. Dictionaries

>>> print eng2sp
{ � one � : � uno � , � three � : � tres � , � two � : � dos � }

The order of the key-value pairs is not the same. In fact, if you type the same
example on your computer, you might get a different result. In general, the order
of items in a dictionary is unpredictable.

But that's not a problem because the elements of a dictionary are never indexed
with integer indices. Instead, you use the keys to look up the corresponding values:

>>> print eng2sp[� two �]
� dos �

The key'two' always maps to the value� dos � so the order of the items doesn't
matter.

If the key isn't in the dictionary, you get an exception:

>>> print eng2sp[� four �]
KeyError: � four �

Thelen function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng2sp)
3

Thein operator works on dictionaries; it tells you whether something appears as
akeyin the dictionary (appearing as a value is not good enough).

>>> � one � in eng2sp
True
>>> � uno � in eng2sp
False

To see whether something appears as a value in a dictionary, you can use the
methodvalues , which returns the values as a list, and then use thein operator:

>>> vals = eng2sp.values()
>>> � uno � in vals
True

The in operator uses different algorithms for lists and dictionaries. For lists, it
uses a linear search algorithm. As the list gets longer, the search time gets longer
in direct proportion to the length of the list. For dictionaries, Python uses an
algorithm called ahash table that has a remarkable property—thein operator
takes about the same amount of time no matter how many items there are in a
dictionary. I won't explain why hash functions are so magical, but you can read
more about it atwikipedia.org/wiki/Hash_table .

Exercise 9.1Write a program that reads the words inwords.txt and stores them
as keys in a dictionary. It doesn't matter what the values are. Then you can use
thein operator as a fast way to check whether a string is in the dictionary.

9.1. Dictionary as a set of counters 109

9.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how many times eachletter
appears. There are several ways you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then you
could traverse the string and, for each character, increment the correspond-
ing counter, probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each
character to a number (using the built-in functionord), use the number as
an index into the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters asthe
corresponding values. The �rst time you see a character, you would add
an item to the dictionary. After that you would increment the value of an
existing item.

Each of these options performs the same computation, but each of them imple-
ments that computation in a different way.

An implementation is a way of performing a computation; some implementations
are better than others. For example, an advantage of the dictionary implementation
is that we don't have to know ahead of time which letters appear in the string and
we only have to make room for the letters that do appear.

Here is what the code might look like:

word = � brontosaurus �
d = dict()
for c in word:

if c not in d:
d[c] = 1

else:
d[c] = d[c] + 1

print d

We are effectively computing ahistogram, which is a statistical term for a set of
counters (or frequencies).

Thefor loop traverses the string. Each time through the loop, if the characterc is
not in the dictionary, we create a new item with keyc and the initial value 1 (since
we have seen this letter once). Ifc is already in the dictionary we incrementd[c] .

Here's the output of the program:

{ � a� : 1, � b� : 1, � o� : 2, � n� : 1, � s� : 2, � r � : 2, � u� : 2, � t � : 1}

The histogram indicates that the letters'a' and� b� appear once;� o� appears
twice, and so on.

110 Chapter 9. Dictionaries

Dictionaries have a method calledget that takes a key and a default value. If the
key appears in the dictionary,get returns the corresponding value; otherwise it
returns the default value. For example:

>>> counts = { � chuck � : 1 , � annie � : 42, � jan � : 100}
>>> print counts.get(� jan � , 0)
100
>>> print counts.get(� tim � , 0)
0

We can useget to write our histogram loop more concisely. Because theget
method automatically handles the case where a key is not in a dictionary, we can
reduce four lines down to one and eliminate theif statement.

word = � brontosaurus �
d = dict()
for c in word:

d[c] = d.get(c,0) + 1
print d

The use of theget method to simplify this counting loop ends up being a very
commonly used “idiom” in Python and we will use it many times in the rest of the
book. So you should take a moment and compare the loop using theif statement
andin operator with the loop using theget method. They do exactly the same
thing, but one is more succinct.

9.2 Dictionaries and �les

One of the common uses of a dictionary is to count the occurrence of wordsin a
�le with some written text. Let's start with a very simple �le of words taken from
the text ofRomeo and Juliet.

For the �rst set of examples, we will use a shortened and simpli�ed versionof
the text with no punctuation. Later we will work with the text of the scene with
punctuation included.

But soft what light through yonder window breaks
It is the east and Juliet is the sun
Arise fair sun and kill the envious moon
Who is already sick and pale with grief

We will write a Python program to read through the lines of the �le, break each
line into a list of words, and then loop through each of the words in the line and
count each word using a dictionary.

You will see that we have twofor loops. The outer loop is reading the lines of
the �le and the inner loop is iterating through each of the words on that particular
line. This is an example of a pattern callednested loopsbecause one of the loops
is theouter loop and the other loop is theinner loop.

9.3. Looping and dictionaries 111

Because the inner loop executes all of its iterations each time the outer loop makes
a single iteration, we think of the inner loop as iterating “more quickly” and the
outer loop as iterating more slowly.

The combination of the two nested loops ensures that we will count every word
on every line of the input �le.

fname = raw_input(� Enter the file name: �)
try:

fhand = open(fname)
except:

print � File cannot be opened: � , fname
exit()

counts = dict()
for line in fhand:

words = line.split()
for word in words:

if word not in counts:
counts[word] = 1

else:
counts[word] += 1

print counts

When we run the program, we see a raw dump of all of the counts in unsortedhash
order. (theromeo.txt �le is available atwww.py4inf.com/code/romeo.txt)

python count1.py
Enter the file name: romeo.txt
{ � and � : 3, � envious � : 1, � already � : 1, � fair � : 1,
� is � : 3, � through � : 1, � pale � : 1, � yonder � : 1,
� what � : 1, � sun � : 2, � Who� : 1, � But � : 1, � moon� : 1,
� window � : 1, � sick � : 1, � east � : 1, � breaks � : 1,
� grief � : 1, � with � : 1, � light � : 1, � It � : 1, � Arise � : 1,
� kill � : 1, � the � : 3, � soft � : 1, � Juliet � : 1}

It is a bit inconvenient to look through the dictionary to �nd the most common
words and their counts, so we need to add some more Python code to get us the
output that will be more helpful.

9.3 Looping and dictionaries

If you use a dictionary as the sequence in afor statement, it traverses the keys of
the dictionary. This loop prints each key and the corresponding value:

counts = { � chuck � : 1 , � annie � : 42, � jan � : 100}
for key in counts:

print key, counts[key]

Here's what the output looks like:

112 Chapter 9. Dictionaries

jan 100
chuck 1
annie 42

Again, the keys are in no particular order.

We can use this pattern to implement the various loop idioms that we have de-
scribed earlier. For example if we wanted to �nd all the entries in a dictionary
with a value above ten, we could write the following code:

counts = { � chuck � : 1 , � annie � : 42, � jan � : 100}
for key in counts:

if counts[key] > 10 :
print key, counts[key]

Thefor loop iterates through thekeysof the dictionary, so we must use the index
operator to retrieve the correspondingvaluefor each key. Here's what the output
looks like:

jan 100
annie 42

We see only the entries with a value above 10.

If you want to print the keys in alphabetical order, you �rst make a list ofthe keys
in the dictionary using thekeys method available in dictionary objects, and then
sort that list and loop through the sorted list, looking up each key and printing out
key-value pairs in sorted order as follows:

counts = { � chuck � : 1 , � annie � : 42, � jan � : 100}
lst = counts.keys()
print lst
lst.sort()
for key in lst:

print key, counts[key]

Here's what the output looks like:

[� jan � , � chuck � , � annie �]
annie 42
chuck 1
jan 100

First you see the list of keys in unsorted order that we get from thekeys method.
Then we see the key-value pairs in order from thefor loop.

9.4 Advanced text parsing

In the above example using the �leromeo.txt , we made the �le as simple as pos-
sible by removing all punctuation by hand. The actual text has lots of punctuation,
as shown below.

9.4. Advanced text parsing 113

But, soft! what light through yonder window breaks?
It is the east, and Juliet is the sun.
Arise, fair sun, and kill the envious moon,
Who is already sick and pale with grief,

Since the Pythonsplit function looks for spaces and treats words as tokens sep-
arated by spaces, we would treat the words “soft!” and “soft” asdifferentwords
and create a separate dictionary entry for each word.

Also since the �le has capitalization, we would treat “who” and “Who” as different
words with different counts.

We can solve both these problems by using the string methodslower ,
punctuation , andtranslate . Thetranslate is the most subtle of the methods.
Here is the documentation fortranslate :

string.translate(s, table[, deletechars])

Delete all characters from s that are in deletechars (if present), and thentranslate
the characters using table, which must be a 256-character string giving the trans-
lation for each character value, indexed by its ordinal. If table is None, thenonly
the character deletion step is performed.

We will not specify thetable but we will use thedeletechars parameter to
delete all of the punctuation. We will even let Python tell us the list of characters
that it considers “punctuation”:

>>> import string
>>> string.punctuation
� !"#$%&\ � ()*+,-./:;<=>?@[\\]ˆ_ � {|}˜ �

We make the following modi�cations to our program:

import string # New Code

fname = raw_input(� Enter the file name: �)
try:

fhand = open(fname)
except:

print � File cannot be opened: � , fname
exit()

counts = dict()
for line in fhand:

line = line.translate(None, string.punctuation) # New Cod e
line = line.lower() # New Code
words = line.split()
for word in words:

if word not in counts:
counts[word] = 1

else:
counts[word] += 1

print counts

114 Chapter 9. Dictionaries

We usetranslate to remove all punctuation andlower to force the line to low-
ercase. Otherwise the program is unchanged. Note that for Python 2.5 and earlier,
translate does not acceptNone as the �rst parameter so use this code instead for
the translate call:

print a.translate(string.maketrans(� � , � �), string.punctuation

Part of learning the “Art of Python” or “Thinking Pythonically” is realizingthat
Python often has built-in capabilities for many common data analysis problems.
Over time, you will see enough example code and read enough of the documenta-
tion to know where to look to see if someone has already written something that
makes your job much easier.

The following is an abbreviated version of the output:

Enter the file name: romeo-full.txt
{ � swearst � : 1, � all � : 6, � afeard � : 1, � leave � : 2, � these � : 2,
� kinsmen � : 2, � what � : 11, � thinkst � : 1, � love � : 24, � cloak � : 1,
a� : 24, � orchard � : 2, � light � : 5, � lovers � : 2, � romeo � : 40,
� maiden � : 1, � whiteupturned � : 1, � juliet � : 32, � gentleman � : 1,
� it � : 22, � leans � : 1, � canst � : 1, � having � : 1, ...}

Looking through this output is still unwieldy and we can use Python to give us
exactly what we are looking for, but to do so, we need to learn about Python
tuples. We will pick up this example once we learn about tuples.

9.5 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing and
checking data by hand. Here are some suggestions for debugging largedatasets:

Scale down the input: If possible, reduce the size of the dataset. For example if
the program reads a text �le, start with just the �rst 10 lines, or with the
smallest example you can �nd. You can either edit the �les themselves, or
(better) modify the program so it reads only the �rstn lines.

If there is an error, you can reducen to the smallest value that manifests the
error, and then increase it gradually as you �nd and correct errors.

Check summaries and types:Instead of printing and checking the entire dataset,
consider printing summaries of the data: for example, the number of items
in a dictionary or the total of a list of numbers.

A common cause of runtime errors is a value that is not the right type. For
debugging this kind of error, it is often enough to print the type of a value.

Write self-checks: Sometimes you can write code to check for errors automati-
cally. For example, if you are computing the average of a list of numbers,
you could check that the result is not greater than the largest element in

9.6. Glossary 115

the list or less than the smallest. This is called a “sanity check” because it
detects results that are “completely illogical”.

Another kind of check compares the results of two different computations
to see if they are consistent. This is called a “consistency check”.

Pretty print the output: Formatting debugging output can make it easier to spot
an error.

Again, time you spend building scaffolding can reduce the time you spend debug-
ging.

9.6 Glossary

dictionary: A mapping from a set of keys to their corresponding values.

hashtable: The algorithm used to implement Python dictionaries.

hash function: A function used by a hashtable to compute the location for a key.

histogram: A set of counters.

implementation: A way of performing a computation.

item: Another name for a key-value pair.

key: An object that appears in a dictionary as the �rst part of a key-value pair.

key-value pair: The representation of the mapping from a key to a value.

lookup: A dictionary operation that takes a key and �nds the corresponding value.

nested loops:When there are one or more loops “inside” of another loop. The
inner loop runs to completion each time the outer loop runs once.

value: An object that appears in a dictionary as the second part of a key-value
pair. This is more speci�c than our previous use of the word “value”.

9.7 Exercises

Exercise 9.2Write a program that categorizes each mail message by which day
of the week the commit was done. To do this look for lines that start with “From”,
then look for the third word and keep a running count of each of the daysof the
week. At the end of the program print out the contents of your dictionary(order
does not matter).

116 Chapter 9. Dictionaries

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Sample Execution:
python dow.py
Enter a file name: mbox-short.txt
{ � Fri � : 20, � Thu� : 6, � Sat � : 1}

Exercise 9.3Write a program to read through a mail log, build a histogram using
a dictionary to count how many messages have come from each email address,
and print the dictionary.

Enter file name: mbox-short.txt
{ � gopal.ramasammycook@gmail.com � : 1, � louis@media.berkeley.edu � : 3,
� cwen@iupui.edu � : 5, � antranig@caret.cam.ac.uk � : 1,
� rjlowe@iupui.edu � : 2, � gsilver@umich.edu � : 3,
� david.horwitz@uct.ac.za � : 4, � wagnermr@iupui.edu � : 1,
� zqian@umich.edu � : 4, � stephen.marquard@uct.ac.za � : 2,
� ray@media.berkeley.edu � : 1}

Exercise 9.4Add code to the above program to �gure out who has the most mes-
sages in the �le.

After all the data has been read and the dictionary has been created, lookthrough
the dictionary using a maximum loop (see Section 5.7.2) to �nd who has the most
messages and print how many messages the person has.

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zqian@umich.edu 195

Exercise 9.5This program records the domain name (instead of the address)
where the message was sent from instead of who the mail came from (i.e., the
whole email address). At the end of the program, print out the contents ofyour
dictionary.

python schoolcount.py
Enter a file name: mbox-short.txt
{ � media.berkeley.edu � : 4, � uct.ac.za � : 6, � umich.edu � : 7,
� gmail.com � : 1, � caret.cam.ac.uk � : 1, � iupui.edu � : 8}

Chapter 10

Tuples

10.1 Tuples are immutable

A tuple1 is a sequence of values much like a list. The values stored in a tuple can
be any type, and they are indexed by integers. The important differenceis that
tuples areimmutable. Tuples are alsocomparableandhashableso we can sort
lists of them and use tuples as key values in Python dictionaries.

Syntactically, a tuple is a comma-separated list of values:

>>> t = � a� , � b� , � c� , � d� , � e�

Although it is not necessary, it is common to enclose tuples in parentheses to help
us quickly identify tuples when we look at Python code:

>>> t = (� a� , � b� , � c� , � d� , � e�)

To create a tuple with a single element, you have to include the �nal comma:

>>> t1 = (� a� ,)
>>> type(t1)
<type � tuple � >

Without the comma Python treats(� a�) as an expression with a string in paren-
theses that evaluates to a string:

>>> t2 = (� a�)
>>> type(t2)
<type � str � >

Another way to construct a tuple is the built-in functiontuple . With no argument,
it creates an empty tuple:

1Fun fact: The word “tuple” comes from the names given to sequences of numbers of varying
lengths: single, double, triple, quadruple, quituple, sextuple, septuple, etc.

118 Chapter 10. Tuples

>>> t = tuple()
>>> print t
()

If the argument is a sequence (string, list, or tuple), the result of the call totuple
is a tuple with the elements of the sequence:

>>> t = tuple(� lupins �)
>>> print t
(� l � , � u� , � p� , � i � , � n� , � s�)

Becausetuple is the name of a constructor, you should avoid using it as a variable
name.

Most list operators also work on tuples. The bracket operator indexesan element:

>>> t = (� a� , � b� , � c� , � d� , � e�)
>>> print t[0]
� a�

And the slice operator selects a range of elements.

>>> print t[1:3]
(� b� , � c�)

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = � A�
TypeError: object doesn � t support item assignment

You can't modify the elements of a tuple, but you can replace one tuple with
another:

>>> t = (� A� ,) + t[1:]
>>> print t
(� A� , � b� , � c� , � d� , � e�)

10.2 Comparing tuples

The comparison operators work with tuples and other sequences. Pythonstarts by
comparing the �rst element from each sequence. If they are equal, it goes on to the
next element, and so on, until it �nds elements that differ. Subsequent elements
are not considered (even if they are really big).

>>> (0, 1, 2) < (0, 3, 4)
True
>>> (0, 1, 2000000) < (0, 3, 4)
True

Thesort function works the same way. It sorts primarily by �rst element, but in
the case of a tie, it sorts by second element, and so on.

This feature lends itself to a pattern calledDSUfor

10.3. Tuple assignment 119

Decorate a sequence by building a list of tuples with one or more sort keys pre-
ceding the elements from the sequence,

Sort the list of tuples using the Python built-insort , and

Undecorate by extracting the sorted elements of the sequence.

For example, suppose you have a list of words and you want to sort themfrom
longest to shortest:

txt = � but soft what light in yonder window breaks �
words = txt.split()
t = list()
for word in words:

t.append((len(word), word))

t.sort(reverse=True)

res = list()
for length, word in t:

res.append(word)

print res

The �rst loop builds a list of tuples, where each tuple is a word preceded by its
length.

sort compares the �rst element, length, �rst, and only considers the second el-
ement to break ties. The keyword argumentreverse=True tells sort to go in
decreasing order.

The second loop traverses the list of tuples and builds a list of words in descending
order of length. The four-character words are sorted inreversealphabetical order,
so “what” appears before “soft” in the following list.

The output of the program is as follows:

[� yonder � , � window � , � breaks � , � light � , � what � ,
� soft � , � but � , � in �]

Of course the line loses much of its poetic impact when turned into a Python list
and sorted in descending word length order.

10.3 Tuple assignment

One of the unique syntactic features of the Python language is the ability to have a
tuple on the left side of an assignment statement. This allows you to assign more
than one variable at a time when the left side is a sequence.

120 Chapter 10. Tuples

In this example we have a two-element list (which is a sequence) and assign the
�rst and second elements of the sequence to the variablesx and y in a single
statement.

>>> m = [� have � , � fun �]
>>> x, y = m
>>> x
� have �
>>> y
� fun �
>>>

It is not magic, Pythonroughly translates the tuple assignment syntax to be the
following:2

>>> m = [� have � , � fun �]
>>> x = m[0]
>>> y = m[1]
>>> x
� have �
>>> y
� fun �
>>>

Stylistically when we use a tuple on the left side of the assignment statement, we
omit the parentheses, but the following is an equally valid syntax:

>>> m = [� have � , � fun �]
>>> (x, y) = m
>>> x
� have �
>>> y
� fun �
>>>

A particularly clever application of tuple assignment allows us toswapthe values
of two variables in a single statement:

>>> a, b = b, a

Both sides of this statement are tuples, but the left side is a tuple of variables;the
right side is a tuple of expressions. Each value on the right side is assigned to
its respective variable on the left side. All the expressions on the right side are
evaluated before any of the assignments.

The number of variables on the left and the number of values on the right must be
the same:

>>> a, b = 1, 2, 3
ValueError: too many values to unpack

2Python does not translate the syntax literally. For example, if you try this with adictionary, it
will not work as might expect.

10.4. Dictionaries and tuples 121

More generally, the right side can be any kind of sequence (string, list, or tuple).
For example, to split an email address into a user name and a domain, you could
write:

>>> addr = � monty@python.org �
>>> uname, domain = addr.split(� @�)

The return value fromsplit is a list with two elements; the �rst element is as-
signed touname, the second todomain .

>>> print uname
monty
>>> print domain
python.org

10.4 Dictionaries and tuples

Dictionaries have a method calleditems that returns a list of tuples, where each
tuple is a key-value pair3.

>>> d = { � a� :10, � b� :1, � c� :22}
>>> t = d.items()
>>> print t
[(� a� , 10), (� c� , 22), (� b� , 1)]

As you should expect from a dictionary, the items are in no particular order.

However, since the list of tuples is a list, and tuples are comparable, we can now
sort the list of tuples. Converting a dictionary to a list of tuples is a way for usto
output the contents of a dictionary sorted by key:

>>> d = { � a� :10, � b� :1, � c� :22}
>>> t = d.items()
>>> t
[(� a� , 10), (� c� , 22), (� b� , 1)]
>>> t.sort()
>>> t
[(� a� , 10), (� b� , 1), (� c� , 22)]

The new list is sorted in ascending alphabetical order by the key value.

10.5 Multiple assignment with dictionaries

Combiningitems , tuple assignment, andfor , you can see a nice code pattern for
traversing the keys and values of a dictionary in a single loop:

for key, val in d.items():
print val, key

3This behavior is slightly different in Python 3.0.

122 Chapter 10. Tuples

This loop has twoiteration variables becauseitems returns a list of tuples and
key, val is a tuple assignment that successively iterates through each of the key-
value pairs in the dictionary.

For each iteration through the loop, bothkey andvalue are advanced to the next
key-value pair in the dictionary (still in hash order).

The output of this loop is:

10 a
22 c
1 b

Again, it is in hash key order (i.e., no particular order).

If we combine these two techniques, we can print out the contents of a dictionary
sorted by thevaluestored in each key-value pair.

To do this, we �rst make a list of tuples where each tuple is(value, key) . The
items method would give us a list of(key, value) tuples—but this time we
want to sort by value, not key. Once we have constructed the list with the value-
key tuples, it is a simple matter to sort the list in reverse order and print out the
new, sorted list.

>>> d = { � a� :10, � b� :1, � c� :22}
>>> l = list()
>>> for key, val in d.items() :
... l.append((val, key))
...
>>> l
[(10, � a�), (22, � c�), (1, � b�)]
>>> l.sort(reverse=True)
>>> l
[(22, � c�), (10, � a�), (1, � b�)]
>>>

By carefully constructing the list of tuples to have the value as the �rst element of
each tuple, we can sort the list of tuples and get our dictionary contents sorted by
value.

10.6 The most common words

Coming back to our running example of the text fromRomeo and JulietAct 2,
Scene 2, we can augment our program to use this technique to print the ten most
common words in the text as follows:

import string
fhand = open(� romeo-full.txt �)
counts = dict()
for line in fhand:

line = line.translate(None, string.punctuation)

10.6. The most common words 123

line = line.lower()
words = line.split()
for word in words:

if word not in counts:
counts[word] = 1

else:
counts[word] += 1

Sort the dictionary by value
lst = list()
for key, val in counts.items():

lst.append((val, key))

lst.sort(reverse=True)

for key, val in lst[:10] :
print key, val

The �rst part of the program which reads the �le and computes the dictionary
that maps each word to the count of words in the document is unchanged. But
instead of simply printing outcounts and ending the program, we construct a list
of (val, key) tuples and then sort the list in reverse order.

Since the value is �rst, it will be used for the comparisons. If there is more than
one tuple with the same value, it will look at the second element (the key), so
tuples where the value is the same will be further sorted by the alphabetical order
of the key.

At the end we write a nicefor loop which does a multiple assignment iteration
and prints out the ten most common words by iterating through a slice of the list
(lst[:10]).

So now the output �nally looks like what we want for our word frequencyanalysis.

61 i
42 and
40 romeo
34 to
34 the
32 thou
32 juliet
30 that
29 my
24 thee

The fact that this complex data parsing and analysis can be done with an easy-to-
understand 19-line Python program is one reason why Python is a good choice as
a language for exploring information.

124 Chapter 10. Tuples

10.7 Using tuples as keys in dictionaries

Because tuples arehashableand lists are not, if we want to create acomposite
key to use in a dictionary we must use a tuple as the key.

We would encounter a composite key if we wanted to create a telephone direc-
tory that maps from last-name, �rst-name pairs to telephone numbers. Assuming
that we have de�ned the variableslast , first , andnumber , we could write a
dictionary assignment statement as follows:

directory[last,first] = number

The expression in brackets is a tuple. We could use tuple assignment in afor loop
to traverse this dictionary.

for last, first in directory:
print first, last, directory[last,first]

This loop traverses the keys indirectory , which are tuples. It assigns the ele-
ments of each tuple tolast andfirst , then prints the name and corresponding
telephone number.

10.8 Sequences: strings, lists, and tuples—Oh My!

I have focused on lists of tuples, but almost all of the examples in this chapteralso
work with lists of lists, tuples of tuples, and tuples of lists. To avoid enumerat-
ing the possible combinations, it is sometimes easier to talk about sequences of
sequences.

In many contexts, the different kinds of sequences (strings, lists, and tuples) can
be used interchangeably. So how and why do you choose one over the others?

To start with the obvious, strings are more limited than other sequences because
the elements have to be characters. They are also immutable. If you need the
ability to change the characters in a string (as opposed to creating a new string),
you might want to use a list of characters instead.

Lists are more common than tuples, mostly because they are mutable. But there
are a few cases where you might prefer tuples:

1. In some contexts, like areturn statement, it is syntactically simpler to
create a tuple than a list. In other contexts, you might prefer a list.

2. If you want to use a sequence as a dictionary key, you have to use anim-
mutable type like a tuple or string.

3. If you are passing a sequence as an argument to a function, using tuples
reduces the potential for unexpected behavior due to aliasing.

10.9. Debugging 125

Because tuples are immutable, they don't provide methods likesort andreverse ,
which modify existing lists. However Python provides the built-in functions
sorted andreversed , which take any sequence as a parameter and return a new
sequence with the same elements in a different order.

10.9 Debugging

Lists, dictionaries and tuples are known generically asdata structures; in this
chapter we are starting to see compound data structures, like lists of tuples, and
dictionaries that contain tuples as keys and lists as values. Compound data struc-
tures are useful, but they are prone to what I callshape errors; that is, errors
caused when a data structure has the wrong type, size, or composition, orperhaps
you write some code and forget the shape of your data and introduce an error.

For example, if you are expecting a list with one integer and I give you a plainold
integer (not in a list), it won't work.

When you are debugging a program, and especially if you are working ona hard
bug, there are four things to try:

reading: Examine your code, read it back to yourself, and check that it says what
you meant to say.

running: Experiment by making changes and running different versions. Often
if you display the right thing at the right place in the program, the prob-
lem becomes obvious, but sometimes you have to spend some time to build
scaffolding.

ruminating: Take some time to think! What kind of error is it: syntax, runtime,
semantic? What information can you get from the error messages, or from
the output of the program? What kind of error could cause the problem
you're seeing? What did you change last, before the problem appeared?

retreating: At some point, the best thing to do is back off, undoing recent
changes, until you get back to a program that works and that you under-
stand. Then you can start rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget
the others. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographicalerror,
but not if the problem is a conceptual misunderstanding. If you don't understand
what your program does, you can read it 100 times and never see the error, because
the error is in your head.

Running experiments can help, especially if you run small, simple tests. But if
you run experiments without thinking or reading your code, you might fall into a

126 Chapter 10. Tuples

pattern I call “random walk programming”, which is the process of making ran-
dom changes until the program does the right thing. Needless to say, random walk
programming can take a long time.

You have to take time to think. Debugging is like an experimental science. You
should have at least one hypothesis about what the problem is. If thereare two or
more possibilities, try to think of a test that would eliminate one of them.

Taking a break helps with the thinking. So does talking. If you explain the problem
to someone else (or even to yourself), you will sometimes �nd the answer before
you �nish asking the question.

But even the best debugging techniques will fail if there are too many errors, or
if the code you are trying to �x is too big and complicated. Sometimes the best
option is to retreat, simplifying the program until you get to something that works
and that you understand.

Beginning programmers are often reluctant to retreat because they can't stand to
delete a line of code (even if it's wrong). If it makes you feel better, copyyour
program into another �le before you start stripping it down. Then you can paste
the pieces back in a little bit at a time.

Finding a hard bug requires reading, running, ruminating, and sometimes retreat-
ing. If you get stuck on one of these activities, try the others.

10.10 Glossary

comparable: A type where one value can be checked to see if it is greater than,
less than, or equal to another value of the same type. Types which are
comparable can be put in a list and sorted.

data structure: A collection of related values, often organized in lists, dictionar-
ies, tuples, etc.

DSU: Abbreviation of “decorate-sort-undecorate”, a pattern that involves build-
ing a list of tuples, sorting, and extracting part of the result.

gather: The operation of assembling a variable-length argument tuple.

hashable: A type that has a hash function. Immutable types like integers, �oats,
and strings are hashable; mutable types like lists and dictionaries are not.

scatter: The operation of treating a sequence as a list of arguments.

shape (of a data structure): A summary of the type, size, and composition of a
data structure.

singleton: A list (or other sequence) with a single element.

10.11. Exercises 127

tuple: An immutable sequence of elements.

tuple assignment: An assignment with a sequence on the right side and a tuple
of variables on the left. The right side is evaluated and then its elements are
assigned to the variables on the left.

10.11 Exercises

Exercise 10.1Revise a previous program as follows: Read and parse the “From”
lines and pull out the addresses from the line. Count the number of messages from
each person using a dictionary.

After all the data has been read, print the person with the most commits by creating
a list of (count, email) tuples from the dictionary. Then sort the list in reverse order
and print out the person who has the most commits.

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zqian@umich.edu 195

Exercise 10.2This program counts the distribution of the hour of the day for
each of the messages. You can pull the hour from the “From” line by �nding the
time string and then splitting that string into parts using the colon character. Once
you have accumulated the counts for each hour, print out the counts, one per line,
sorted by hour as shown below.

Sample Execution:
python timeofday.py
Enter a file name: mbox-short.txt
04 3
06 1
07 1
09 2
10 3
11 6
14 1
15 2
16 4
17 2
18 1
19 1

128 Chapter 10. Tuples

Exercise 10.3Write a program that reads a �le and prints thelettersin decreasing
order of frequency. Your program should convert all the input to lower case and
only count the letters a-z. Your program should not count spaces, digits, punctua-
tion, or anything other than the letters a-z. Find text samples from several different
languages and see how letter frequency varies between languages. Compare your
results with the tables atwikipedia.org/wiki/Letter_frequencies .

Chapter 11

Regular expressions

So far we have been reading through �les, looking for patterns and extracting
various bits of lines that we �nd interesting. We have been using string methods
like split andfind and using lists and string slicing to extract portions of the
lines.

This task of searching and extracting is so common that Python has a very pow-
erful library calledregular expressionsthat handles many of these tasks quite
elegantly. The reason we have not introduced regular expressions earlier in the
book is because while they are very powerful, they are a little complicated and
their syntax takes some getting used to.

Regular expressions are almost their own little programming language for search-
ing and parsing strings. As a matter of fact, entire books have been written on
the topic of regular expressions. In this chapter, we will only cover the basics of
regular expressions. For more detail on regular expressions, see:

http://en.wikipedia.org/wiki/Regular_expression

https://docs.python.org/2/library/re.html

The regular expression libraryre must be imported into your program before you
can use it. The simplest use of the regular expression library is thesearch()
function. The following program demonstrates a trivial use of the searchfunction.

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
if re.search(� From: � , line) :

print line

We open the �le, loop through each line, and use the regular expressionsearch()
to only print out lines that contain the string “From:”. This program does not

130 Chapter 11. Regular expressions

use the real power of regular expressions, since we could have just as easily used
line.find() to accomplish the same result.

The power of the regular expressions comes when we add special characters to
the search string that allow us to control more precisely which lines match the
string. Adding these special characters to our regular expression allows us to do
sophisticated matching and extraction while writing very little code.

For example, the caret character is used in regular expressions to match “the begin-
ning” of a line. We could change our program to match only lines where “From:”
was at the beginning of the line as follows:

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
if re.search(� ˆFrom: � , line) :

print line

Now we will only match lines thatstart withthe string “From:”. This is still a very
simple example that we could have done equivalently with thestartswith()
method from the string library. But it serves to introduce the notion that regular
expressions contain special action characters that give us more control over what
will match the regular expression.

11.1 Character matching in regular expressions

There are a number of other special characters that let us build even more power-
ful regular expressions. The most commonly used special character is the period
(”dot”) or full stop, which matches any character.

In the following example, the regular expression “F..m:” would match any of the
strings “From:”, “Fxxm:”, “F12m:”, or “F!@m:” since the period characters in
the regular expression match any character.

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
if re.search(� ˆF..m: � , line) :

print line

This is particularly powerful when combined with the ability to indicate that a
character can be repeated any number of times using the “*” or “+” characters in
your regular expression. These special characters mean that insteadof matching
a single character in the search string, they match zero-or-more characters (in the
case of the asterisk) or one-or-more of the characters (in the case of the plus sign).

We can further narrow down the lines that we match using a repeatedwild card
character in the following example:

11.2. Extracting data using regular expressions 131

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
if re.search(� ˆFrom:.+@ � , line) :

print line

The search string “ˆ From:.+@” will successfully match lines that start with
“From:”, followed by one or more characters (“.+”), followed by an at-sign. So
this will match the following line:

From: stephen.marquard @uct.ac.za

You can think of the “.+” wildcard as expanding to match all the characters be-
tween the colon character and the at-sign.

From: .+ @

It is good to think of the plus and asterisk characters as “pushy”. For example,
the following string would match thelast at-sign in the string as the “.+” pushes
outwards, as shown below:

From: stephen.marquard@uct.ac.za, csev@umich.edu, and cwen @iupui.edu

It is possible to tell an asterisk or plus sign not to be so “greedy” by addingan-
other character. See the detailed documentation for information on turning off the
greedy behavior.

11.2 Extracting data using regular expressions

If we want to extract data from a string in Python we can use thefindall()
method to extract all of the substrings which match a regular expression. Let's use
the example of wanting to extract anything that looks like an email address from
any line, regardless of format. For example, we want to pull the email addresses
from each of the following lines:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>

for <source@collab.sakaiproject.org>;
Received: (from apache@localhost)
Author: stephen.marquard@uct.ac.za

We don't want to write code for each of the types of lines, splitting and slicing
differently for each line. This following program usesfindall() to �nd the lines
with email addresses in them and extract one or more addresses from each of those
lines.

import re
s = � Hello from csev@umich.edu to cwen@iupui.edu about the meet ing @2PM�
lst = re.findall(� \S+@\S+� , s)
print lst

132 Chapter 11. Regular expressions

Thefindall() method searches the string in the second argument and returns a
list of all of the strings that look like email addresses. We are using a two-character
sequence that matches a non-whitespace character (nS).

The output of the program would be:

[� csev@umich.edu � , � cwen@iupui.edu �]

Translating the regular expression, we are looking for substrings that have at least
one non-whitespace character, followed by an at-sign, followed by at least one
more non-whitespace character. The “nS+” matches as many non-whitespace
characters as possible.

The regular expression would match twice (csev@umich.edu and
cwen@iupui.edu), but it would not match the string “@2PM” because there
are no non-blank charactersbeforethe at-sign. We can use this regular expression
in a program to read all the lines in a �le and print out anything that looks like an
email address as follows:

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
x = re.findall(� \S+@\S+� , line)
if len(x) > 0 :

print x

We read each line and then extract all the substrings that match our regularexpres-
sion. Sincefindall() returns a list, we simply check if the number of elements
in our returned list is more than zero to print only lines where we found at least
one substring that looks like an email address.

If we run the program onmbox.txt we get the following output:

[� wagnermr@iupui.edu �]
[� cwen@iupui.edu �]
[� <postmaster@collab.sakaiproject.org> �]
[� <200801032122.m03LMFo4005148@nakamura.uits.iupui.ed u>�]
[� <source@collab.sakaiproject.org>; �]
[� <source@collab.sakaiproject.org>; �]
[� <source@collab.sakaiproject.org>; �]
[� apache@localhost) �]
[� source@collab.sakaiproject.org; �]

Some of our email addresses have incorrect characters like “<” or “;” at the begin-
ning or end. Let's declare that we are only interested in the portion of the string
that starts and ends with a letter or a number.

To do this, we use another feature of regular expressions. Square brackets are
used to indicate a set of multiple acceptable characters we are willing to consider
matching. In a sense, the “nS” is asking to match the set of “non-whitespace

11.3. Combining searching and extracting 133

characters”. Now we will be a little more explicit in terms of the characters we
will match.

Here is our new regular expression:

[a-zA-Z0-9]\S*@\S*[a-zA-Z]

This is getting a little complicated and you can begin to see why regular expres-
sions are their own little language unto themselves. Translating this regular ex-
pression, we are looking for substrings that start with asingle lowercase letter,
uppercase letter, or number “[a-zA-Z0-9]”, followed by zero or morenon-blank
characters (“nS*”), followed by an at-sign, followed by zero or more non-blank
characters (“nS*”), followed by an uppercase or lowercase letter. Note that we
switched from “+” to “*” to indicate zero or more non-blank characters since “[a-
zA-Z0-9]” is already one non-blank character. Remember that the “*” or “+”
applies to the single character immediately to the left of the plus or asterisk.

If we use this expression in our program, our data is much cleaner:

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
x = re.findall(� [a-zA-Z0-9]\S*@\S*[a-zA-Z] � , line)
if len(x) > 0 :

print x

...
[� wagnermr@iupui.edu �]
[� cwen@iupui.edu �]
[� postmaster@collab.sakaiproject.org �]
[� 200801032122.m03LMFo4005148@nakamura.uits.iupui.edu �]
[� source@collab.sakaiproject.org �]
[� source@collab.sakaiproject.org �]
[� source@collab.sakaiproject.org �]
[� apache@localhost �]

Notice that on the “source@collab.sakaiproject.org” lines, our regular expression
eliminated two letters at the end of the string (“>;”). This is because when we
append “[a-zA-Z]” to the end of our regular expression, we are demanding that
whatever string the regular expression parser �nds must end with a letter.So when
it sees the “>” after “sakaiproject.org>;” it simply stops at the last “matching” letter
it found (i.e., the “g” was the last good match).

Also note that the output of the program is a Python list that has a string as the
single element in the list.

11.3 Combining searching and extracting

Suppose we want to �nd numbers on lines that start with the string “X-” suchas:

134 Chapter 11. Regular expressions

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

we don't just wantany �oating-point numbers fromany lines. We only want to
extract numbers from lines that have the above syntax.

We can construct the following regular expression to select the lines:

ˆX-.*: [0-9.]+

Translating this, we are saying, we want lines that start with “X-”, followedby
zero or more characters (“.*”), followed by a colon (“:”) and then a space. After
the space we are looking for one or more characters that are either a digit(0-9)
or a period “[0-9.]+”. Note that inside the square brackets, the period matches an
actual period (i.e., it is not a wildcard between the square brackets).

This is a very tight expression that will pretty much match only the lines we are
interested in, as follows:

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
if re.search(� ˆX\S*: [0-9.]+ � , line) :

print line

When we run the program, we see the data nicely �ltered to show only the lines
we are looking for.

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000
X-DSPAM-Confidence: 0.6178
X-DSPAM-Probability: 0.0000

But now we have to solve the problem of extracting the numbers. While it would
be simple enough to usesplit , we can use another feature of regular expressions
to both search and parse the line at the same time.

Parentheses are another special character in regular expressions.When we add
parentheses to a regular expression, they are ignored when matching thestring.
But when we are usingfindall() , parentheses indicate that while we want the
whole expression to match, we only are interested in extracting a portion of the
substring that matches the regular expression.

So we make the following change to our program:

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
x = re.findall(� ˆX\S*: ([0-9.]+) � , line)
if len(x) > 0 :

print x

11.3. Combining searching and extracting 135

Instead of callingsearch() , we add parentheses around the part of the regular
expression that represents the �oating-point number to indicate we only want
findall() to give us back the �oating-point number portion of the matching
string.

The output from this program is as follows:

[� 0.8475 �]
[� 0.0000 �]
[� 0.6178 �]
[� 0.0000 �]
[� 0.6961 �]
[� 0.0000 �]
..

The numbers are still in a list and need to be converted from strings to �oating
point, but we have used the power of regular expressions to both search and extract
the information we found interesting.

As another example of this technique, we see that the �le contains a number of
lines of the form:

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772

If we wanted to extract all of the revision numbers (the integer number at theend
of these lines) using the same technique as above, we could write the following
program:

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
x = re.findall(� ˆDetails:.*rev=([0-9]+) � , line)
if len(x) > 0:

print x

Translating our regular expression, we are looking for lines that start with “De-
tails:”, followed by any number of characters (“.*”), followed by “rev=”, and then
by one or more digits. We want to �nd lines that match the entire expression but
we only want to extract the integer number at the end of the line, so we surround
“[0-9]+” with parentheses.

When we run the program, we get the following output:

[� 39772 �]
[� 39771 �]
[� 39770 �]
[� 39769 �]
...

Remember that the “[0-9]+” is “greedy” and it tries to make as large a string of
digits as possible before extracting those digits. This “greedy” behavior iswhy we

136 Chapter 11. Regular expressions

get all �ve digits for each number. The regular expression library expands in both
directions until it encounters a non-digit, or the beginning or the end of a line.

Now we can use regular expressions to redo an exercise from earlier inthe book
where we were interested in the time of day of each mail message. We looked for
lines of the form:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

and wanted to extract the hour of the day for each line. Previously we did this with
two calls tosplit . First the line was split into words and then we pulled out the
�fth word and split it again on the colon character to pull out the two characters
we were interested in.

While this worked, it actually results in pretty brittle code that is assuming the
lines are nicely formatted. If you were to add enough error checking (ora big
try/except block) to insure that your program never failed when presented with
incorrectly formatted lines, the code would balloon to 10-15 lines of code thatwas
pretty hard to read.

We can do this in a far more simply way with the following regular expression:

ˆFrom .* [0-9][0-9]:

The translation of this regular expression is that we are looking for lines that start
with “From ” (note the space), followed by any number of characters (“.*”), fol-
lowed by a space, followed by two digits “[0-9][0-9]”, followed by a colon char-
acter. This is the de�nition of the kinds of lines we are looking for.

In order to pull out only the hour usingfindall() , we add parentheses around
the two digits as follows:

ˆFrom .* ([0-9][0-9]):

This results in the following program:

import re
hand = open(� mbox-short.txt �)
for line in hand:

line = line.rstrip()
x = re.findall(� ˆFrom .* ([0-9][0-9]): � , line)
if len(x) > 0 : print x

When the program runs, it produces the following output:

[� 09�]
[� 18�]
[� 16�]
[� 15�]
...

11.4. Escape character 137

11.4 Escape character

Since we use special characters in regular expressions to match the beginning or
end of a line or specify wild cards, we need a way to indicate that these characters
are “normal” and we want to match the actual character such as a dollar signor
caret.

We can indicate that we simply want to match a character by pre�xing that charac-
ter with a backslash. For example, we can �nd money amounts with the following
regular expression.

import re
x = � We just received $10.00 for cookies. �
y = re.findall(� \$[0-9.]+ � ,x)

Since we pre�x the dollar sign with a backslash, it actually matches the dollar sign
in the input string instead of matching the “end of line”, and the rest of the regular
expression matches one or more digits or the period character.Note: Inside square
brackets, characters are not “special”. So when we say “[0-9.]”, itreally means
digits or a period. Outside of square brackets, a period is the “wild-card”character
and matches any character. Inside square brackets, the period is a period. Using
the backslash character in this way is known as “escaping” the magic properties
of “special” characters, which we've seen before, for example, when we explicitly
include a newline character inprint statements.

11.5 Summary

While this only scratched the surface of regular expressions, we have learned a bit
about the language of regular expressions. They are search stringswith special
characters in them that communicate your wishes to the regular expression system
as to what de�nes “matching” and what is extracted from the matched strings.
Here are some of those special characters and character sequences:

ˆ
Matches the beginning of the line.

$
Matches the end of the line.

.
Matches any character (a wildcard).

ns
Matches a whitespace character.

nS
Matches a non-whitespace character (opposite ofns).

138 Chapter 11. Regular expressions

*
Applies to the immediately preceding character and indicates to match zero or
more of the preceding character(s).

*?
Applies to the immediately preceding character and indicates to match zero or
more of the preceding character(s) in “non-greedy mode”.

+
Applies to the immediately preceding character and indicates to match one or more
of the preceding character(s).

+?
Applies to the immediately preceding character and indicates to match one or more
of the preceding character(s) in “non-greedy mode”.

[aeiou]
Matches a single character as long as that character is in the speci�ed set.In this
example, it would match “a”, “e”, “i”, “o”, or “u”, but no other characters.

[a-z0-9]
You can specify ranges of characters using the minus sign. This example isa
single character that must be a lowercase letter or a digit.

[ˆ A-Za-z]
When the �rst character in the set notation is a caret, it inverts the logic. This
example matches a single character that is anythingother thanan uppercase or
lowercase letter.

()
When parentheses are added to a regular expression, they are ignored for the pur-
pose of matching, but allow you to extract a particular subset of the matchedstring
rather than the whole string when usingfindall() .

nb
Matches the empty string, but only at the start or end of a word.

nB
Matches the empty string, but not at the start or end of a word.

nd
Matches any decimal digit; equivalent to the set [0-9].

nD
Matches any non-digit character; equivalent to the set [ˆ 0-9].

11.6 Bonus section for Unix users

Support for searching �les using regular expressions was built into theUnix op-
erating system since the 1960s and it is available in nearly all programming lan-

11.7. Debugging 139

guages in one form or another.

As a matter of fact, there is a command-line program built into Unix calledgrep
(Generalized Regular Expression Parser) that does pretty much the sameas the
search() examples in this chapter. So if you have a Macintosh or Linux system,
you can try the following commands in your command-line window.

$ grep � ˆFrom: � mbox-short.txt
From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zqian@umich.edu
From: rjlowe@iupui.edu

This tells grep to show you lines that start with the string “From:” in the �le
mbox-short.txt . If you experiment with thegrep command a bit and read the
documentation forgrep , you will �nd some subtle differences between the regular
expression support in Python and the regular expression support ingrep . As an
example,grep does not support the non-blank character “nS” so you will need to
use the slightly more complex set notation “[ˆ]”, which simply means match a
character that is anything other than a space.

11.7 Debugging

Python has some simple and rudimentary built-in documentation that can be quite
helpful if you need a quick refresher to trigger your memory about the exact name
of a particular method. This documentation can be viewed in the Python inter-
preter in interactive mode.

You can bring up an interactive help system usinghelp() .

>>> help()

Welcome to Python 2.6! This is the online help utility.

If this is your first time using Python, you should definitel y check out
the tutorial on the Internet at http://docs.python.org/tu torial/.

Enter the name of any module, keyword, or topic to get help on w riting
Python programs and using Python modules. To quit this help u tility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-l ine summary
of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help> modules

If you know what module you want to use, you can use thedir() command to
�nd the methods in the module as follows:

140 Chapter 11. Regular expressions

>>> import re
>>> dir(re)
[.. � compile � , � copy_reg � , � error � , � escape � , � findall � ,
� finditer � , � match � , � purge � , � search � , � split � , � sre_compile � ,
� sre_parse � , � sub � , � subn � , � sys � , � template �]

You can also get a small amount of documentation on a particular method using
the dir command.

>>> help (re.search)
Help on function search in module re:

search(pattern, string, flags=0)
Scan through string looking for a match to the pattern, retur ning
a match object, or None if no match was found.

>>>

The built-in documentation is not very extensive, but it can be helpful when you
are in a hurry or don't have access to a web browser or search engine.

11.8 Glossary

brittle code: Code that works when the input data is in a particular format but is
prone to breakage if there is some deviation from the correct format. We
call this “brittle code” because it is easily broken.

greedy matching: The notion that the “+” and “*” characters in a regular expres-
sion expand outward to match the largest possible string.

grep: A command available in most Unix systems that searches through text �les
looking for lines that match regular expressions. The command name stands
for ”Generalized Regular Expression Parser”.

regular expression: A language for expressing more complex search strings. A
regular expression may contain special characters that indicate that a search
only matches at the beginning or end of a line or many other similar capa-
bilities.

wild card: A special character that matches any character. In regular expressions
the wild-card character is the period.

11.9 Exercises

Exercise 11.1Write a simple program to simulate the operation of thegrep com-
mand on Unix. Ask the user to enter a regular expression and count the number of
lines that matched the regular expression:

11.9. Exercises 141

$ python grep.py
Enter a regular expression: ˆAuthor
mbox.txt had 1798 lines that matched ˆAuthor

$ python grep.py
Enter a regular expression: ˆX-
mbox.txt had 14368 lines that matched ˆX-

$ python grep.py
Enter a regular expression: java$
mbox.txt had 4218 lines that matched java$

Exercise 11.2Write a program to look for lines of the form

New Revision: 39772

and extract the number from each of the lines using a regular expressionand the
findall() method. Compute the average of the numbers and print out the aver-
age.

Enter file:mbox.txt
38549.7949721

Enter file:mbox-short.txt
39756.9259259

142 Chapter 11. Regular expressions

Chapter 12

Networked programs

While many of the examples in this book have focused on reading �les and looking
for data in those �les, there are many different sources of information when one
considers the Internet.

In this chapter we will pretend to be a web browser and retrieve web pagesusing
the HyperText Transport Protocol (HTTP). Then we will read through the web
page data and parse it.

12.1 HyperText Transport Protocol - HTTP

The network protocol that powers the web is actually quite simple and there is
built-in support in Python calledsockets which makes it very easy to make net-
work connections and retrieve data over those sockets in a Python program.

A socketis much like a �le, except that a single socket provides a two-way con-
nection between two programs. You can both read from and write to the same
socket. If you write something to a socket, it is sent to the application at the other
end of the socket. If you read from the socket, you are given the data which the
other application has sent.

But if you try to read a socket when the program on the other end of the socket
has not sent any data—you just sit and wait. If the programs on both endsof the
socket simply wait for some data without sending anything, they will wait for a
very long time.

So an important part of programs that communicate over the Internet is to have
some sort of protocol. A protocol is a set of precise rules that determine who is
to go �rst, what they are to do, and then what the responses are to that message,
and who sends next, and so on. In a sense the two applications at either end of the
socket are doing a dance and making sure not to step on each other's toes.

144 Chapter 12. Networked programs

There are many documents which describe these network protocols. The Hyper-
Text Transport Protocol is described in the following document:

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

This is a long and complex 176-page document with a lot of detail. If you �nd
it interesting, feel free to read it all. But if you take a look around page 36of
RFC2616 you will �nd the syntax for the GET request. To request a document
from a web server, we make a connection to thedata.pr4e.org server on port
80, and then send a line of the form

GET http://data.pr4e.org/romeo.txt HTTP/1.0

where the second parameter is the web page we are requesting, and then we also
send a blank line. The web server will respond with some header information
about the document and a blank line followed by the document content.

12.2 The World's Simplest Web Browser

Perhaps the easiest way to show how the HTTP protocol works is to write a very
simple Python program that makes a connection to a web server and follows the
rules of the HTTP protocol to requests a document and display what the server
sends back.

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STR EAM)
mysock.connect((� data.pr4e.org � , 80))
mysock.send(� GET http://data.pr4e.org/romeo.txt HTTP/1.0\n\n �)

while True:
data = mysock.recv(512)
if (len(data) < 1) :

break
print data

mysock.close()

First the program makes a connection to port 80 on the serverwww.py4inf.com .
Since our program is playing the role of the “web browser”, the HTTP protocol
says we must send the GET command followed by a blank line.

���������	
� �
��
��
�
��������������

���
	

�
��

�
��

�
�����
�
�
�
�
�
�

��

12.3. Retrieving an image over HTTP 145

Once we send that blank line, we write a loop that receives data in 512-character
chunks from the socket and prints the data out until there is no more data to read
(i.e., the recv() returns an empty string).

The program produces the following output:

HTTP/1.1 200 OK
Date: Sun, 14 Mar 2010 23:52:41 GMT
Server: Apache
Last-Modified: Tue, 29 Dec 2009 01:31:22 GMT
ETag: "143c1b33-a7-4b395bea"
Accept-Ranges: bytes
Content-Length: 167
Connection: close
Content-Type: text/plain

But soft what light through yonder window breaks
It is the east and Juliet is the sun
Arise fair sun and kill the envious moon
Who is already sick and pale with grief

The output starts with headers which the web server sends to describe thedocu-
ment. For example, theContent-Type header indicates that the document is a
plain text document (text/plain).

After the server sends us the headers, it adds a blank line to indicate the end of the
headers, and then sends the actual data of the �leromeo.txt .

This example shows how to make a low-level network connection with sockets.
Sockets can be used to communicate with a web server or with a mail server or
many other kinds of servers. All that is needed is to �nd the document which
describes the protocol and write the code to send and receive the data according to
the protocol.

However, since the protocol that we use most commonly is the HTTP web proto-
col, Python has a special library speci�cally designed to support the HTTP proto-
col for the retrieval of documents and data over the web.

12.3 Retrieving an image over HTTP

In the above example, we retrieved a plain text �le which had newlines in the �le
and we simply copied the data to the screen as the program ran. We can use a
similar program to retrieve an image across using HTTP. Instead of copyingthe
data to the screen as the program runs, we accumulate the data in a string, trimoff
the headers, and then save the image data to a �le as follows:

import socket
import time

mysock = socket.socket(socket.AF_INET, socket.SOCK_STR EAM)

146 Chapter 12. Networked programs

mysock.connect((� www.py4inf.com � , 80))
mysock.send(� GET http://data.pr4e.org/cover.jpg HTTP/1.0\n\n �)

count = 0
picture = "";
while True:

data = mysock.recv(5120)
if (len(data) < 1) : break
time.sleep(0.25)
count = count + len(data)
print len(data),count
picture = picture + data

mysock.close()

Look for the end of the header (2 CRLF)
pos = picture.find("\r\n\r\n");
print � Header length � ,pos
print picture[:pos]

Skip past the header and save the picture data
picture = picture[pos+4:]
fhand = open("stuff.jpg","wb")
fhand.write(picture);
fhand.close()

When the program runs it produces the following output:

$ python urljpeg.py
2920 2920
1460 4380
1460 5840
1460 7300
...
1460 62780
1460 64240
2920 67160
1460 68620
1681 70301
Header length 240
HTTP/1.1 200 OK
Date: Sat, 02 Nov 2013 02:15:07 GMT
Server: Apache
Last-Modified: Sat, 02 Nov 2013 02:01:26 GMT
ETag: "19c141-111a9-4ea280f8354b8"
Accept-Ranges: bytes
Content-Length: 70057
Connection: close
Content-Type: image/jpeg

You can see that for this url, theContent-Type header indicates that body of the
document is an image (image/jpeg). Once the program completes, you can view
the image data by opening the �lestuff.jpg in an image viewer.

12.3. Retrieving an image over HTTP 147

As the program runs, you can see that we don't get 5120 characterseach time
we call therecv() method. We get as many characters as have been transferred
across the network to us by the web server at the moment we callrecv() . In this
example, we either get 1460 or 2920 characters each time we request up to5120
characters of data.

Your results may be different depending on your network speed. Also note that on
the last call torecv() we get 1681 bytes, which is the end of the stream, and in
the next call torecv() we get a zero-length string that tells us that the server has
calledclose() on its end of the socket and there is no more data forthcoming.

We can slow down our successiverecv() calls by uncommenting the call to
time.sleep() . This way, we wait a quarter of a second after each call so that
the server can “get ahead” of us and send more data to us before we call recv()
again. With the delay, in place the program executes as follows:

$ python urljpeg.py
1460 1460
5120 6580
5120 11700
...
5120 62900
5120 68020
2281 70301
Header length 240
HTTP/1.1 200 OK
Date: Sat, 02 Nov 2013 02:22:04 GMT
Server: Apache
Last-Modified: Sat, 02 Nov 2013 02:01:26 GMT
ETag: "19c141-111a9-4ea280f8354b8"
Accept-Ranges: bytes
Content-Length: 70057
Connection: close
Content-Type: image/jpeg

Now other than the �rst and last calls torecv() , we now get 5120 characters each
time we ask for new data.

There is a buffer between the server makingsend() requests and our application
makingrecv() requests. When we run the program with the delay in place, at
some point the server might �ll up the buffer in the socket and be forced topause
until our program starts to empty the buffer. The pausing of either the sending
application or the receiving application is called “�ow control”.

148 Chapter 12. Networked programs

12.4 Retrieving web pages withurllib

While we can manually send and receive data over HTTP using the socket library,
there is a much simpler way to perform this common task in Python by using the
urllib library.

Using urllib , you can treat a web page much like a �le. You simply indicate
which web page you would like to retrieve andurllib handles all of the HTTP
protocol and header details.

The equivalent code to read theromeo.txt �le from the web usingurllib is as
follows:

import urllib

fhand = urllib.urlopen(� http://www.py4inf.com/code/romeo.txt �)
for line in fhand:

print line.strip()

Once the web page has been opened withurllib.urlopen , we can treat it like a
�le and read through it using afor loop.

When the program runs, we only see the output of the contents of the �le. The
headers are still sent, but theurllib code consumes the headers and only returns
the data to us.

But soft what light through yonder window breaks
It is the east and Juliet is the sun
Arise fair sun and kill the envious moon
Who is already sick and pale with grief

As an example, we can write a program to retrieve the data forromeo.txt and
compute the frequency of each word in the �le as follows:

import urllib

counts = dict()
fhand = urllib.urlopen(� http://www.py4inf.com/code/romeo.txt �)
for line in fhand:

words = line.split()
for word in words:

counts[word] = counts.get(word,0) + 1
print counts

Again, once we have opened the web page, we can read it like a local �le.

12.5 Parsing HTML and scraping the web

One of the common uses of theurllib capability in Python is toscrapethe web.
Web scraping is when we write a program that pretends to be a web browser and
retrieves pages, then examines the data in those pages looking for patterns.

12.6. Parsing HTML using regular expressions 149

As an example, a search engine such as Google will look at the source of one web
page and extract the links to other pages and retrieve those pages, extracting links,
and so on. Using this technique, Googlespidersits way through nearly all of the
pages on the web.

Google also uses the frequency of links from pages it �nds to a particularpage as
one measure of how “important” a page is and how high the page should appear
in its search results.

12.6 Parsing HTML using regular expressions

One simple way to parse HTML is to use regular expressions to repeatedly search
for and extract substrings that match a particular pattern.

Here is a simple web page:

<h1>The First Page</h1>
<p>
If you like, you can switch to the

Second Page.
</p>

We can construct a well-formed regular expression to match and extract the link
values from the above text as follows:

href="http://.+?"

Our regular expression looks for strings that start with “href=”http://”, followed by
one or more characters (“.+?”), followed by another double quote. Thequestion
mark added to the “.+?” indicates that the match is to be done in a “non-greedy”
fashion instead of a “greedy” fashion. A non-greedy match tries to �nd thesmall-
estpossible matching string and a greedy match tries to �nd thelargestpossible
matching string.

We add parentheses to our regular expression to indicate which part of our matched
string we would like to extract, and produce the following program:

import urllib
import re

url = raw_input(� Enter - �)
html = urllib.urlopen(url).read()
links = re.findall(� href="(http://.*?)" � , html)
for link in links:

print link

The findall regular expression method will give us a list of all of the strings
that match our regular expression, returning only the link text between the double
quotes.

150 Chapter 12. Networked programs

When we run the program, we get the following output:

python urlregex.py
Enter - http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm

python urlregex.py
Enter - http://www.py4inf.com/book.htm
http://www.greenteapress.com/thinkpython/thinkpytho n.html
http://allendowney.com/
http://www.py4inf.com/code
http://www.lib.umich.edu/espresso-book-machine
http://www.py4inf.com/py4inf-slides.zip

Regular expressions work very nicely when your HTML is well formatted and
predictable. But since there are a lot of “broken” HTML pages out there, a solution
only using regular expressions might either miss some valid links or end up with
bad data.

This can be solved by using a robust HTML parsing library.

12.7 Parsing HTML using BeautifulSoup

There are a number of Python libraries which can help you parse HTML and
extract data from the pages. Each of the libraries has its strengths and weaknesses
and you can pick one based on your needs.

As an example, we will simply parse some HTML input and extract links using
theBeautifulSoup library. You can download and install the BeautifulSoup code
from:

http://www.crummy.com/software/

You can download and “install” BeautifulSoup or you can simply place the
BeautifulSoup.py �le in the same folder as your application.

Even though HTML looks like XML1 and some pages are carefully constructed
to be XML, most HTML is generally broken in ways that cause an XML parser
to reject the entire page of HTML as improperly formed. BeautifulSoup tolerates
highly �awed HTML and still lets you easily extract the data you need.

We will useurllib to read the page and then useBeautifulSoup to extract the
href attributes from the anchor (a) tags.

import urllib
from BeautifulSoup import *

url = raw_input(� Enter - �)
html = urllib.urlopen(url).read()

1The XML format is described in the next chapter.

12.7. Parsing HTML using BeautifulSoup 151

soup = BeautifulSoup(html)

Retrieve all of the anchor tags
tags = soup(� a�)
for tag in tags:

print tag.get(� href � , None)

The program prompts for a web address, then opens the web page, reads the data
and passes the data to the BeautifulSoup parser, and then retrieves all ofthe anchor
tags and prints out thehref attribute for each tag.

When the program runs it looks as follows:

python urllinks.py
Enter - http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm

python urllinks.py
Enter - http://www.py4inf.com/book.htm
http://www.greenteapress.com/thinkpython/thinkpytho n.html
http://allendowney.com/
http://www.si502.com/
http://www.lib.umich.edu/espresso-book-machine
http://www.py4inf.com/code
http://www.pythonlearn.com/

You can use BeautifulSoup to pull out various parts of each tag as follows:

import urllib
from BeautifulSoup import *

url = raw_input(� Enter - �)
html = urllib.urlopen(url).read()
soup = BeautifulSoup(html)

Retrieve all of the anchor tags
tags = soup(� a�)
for tag in tags:

Look at the parts of a tag
print � TAG:� ,tag
print � URL: � ,tag.get(� href � , None)
print � Content: � ,tag.contents[0]
print � Attrs: � ,tag.attrs

This produces the following output:

python urllink2.py
Enter - http://www.dr-chuck.com/page1.htm
TAG:
Second Page
URL: http://www.dr-chuck.com/page2.htm
Content: [u � \nSecond Page �]
Attrs: [(u � href � , u � http://www.dr-chuck.com/page2.htm �)]

These examples only begin to show the power of BeautifulSoup when it comes

152 Chapter 12. Networked programs

to parsing HTML. See the documentation and samples athttp://www.crummy.
com/software/BeautifulSoup/ for more detail.

12.8 Reading binary �les using urllib

Sometimes you want to retrieve a non-text (or binary) �le such as an image or
video �le. The data in these �les is generally not useful to print out, but you can
easily make a copy of a URL to a local �le on your hard disk usingurllib .

The pattern is to open the URL and useread to download the entire contents of
the document into a string variable (img) then write that information to a local �le
as follows:

img = urllib.urlopen(� http://data.pr4e.org/cover.jpg �).read()
fhand = open(� cover.jpg � , � w�)
fhand.write(img)
fhand.close()

This program reads all of the data in at once across the network and stores it in the
variableimg in the main memory of your computer, then opens the �lecover.jpg
and writes the data out to your disk. This will work if the size of the �le is less
than the size of the memory of your computer.

However if this is a large audio or video �le, this program may crash or at least
run extremely slowly when your computer runs out of memory. In order to avoid
running out of memory, we retrieve the data in blocks (or buffers) and then write
each block to your disk before retrieving the next block. This way the program can
read any size �le without using up all of the memory you have in your computer.

import urllib

img = urllib.urlopen(� http://data.pr4e.org/cover.jpg �)
fhand = open(� cover.jpg � , � w�)
size = 0
while True:

info = img.read(100000)
if len(info) < 1 : break
size = size + len(info)
fhand.write(info)

print size, � characters copied. �
fhand.close()

In this example, we read only 100,000 characters at a time and then write those
characters to thecover.jpg �le before retrieving the next 100,000 characters of
data from the web.

This program runs as follows:

python curl2.py
568248 characters copied.

12.9. Glossary 153

If you have a Unix or Macintosh computer, you probably have a command built in
to your operating system that performs this operation as follows:

curl -O http://data.pr4e.org/cover.jpg

The commandcurl is short for “copy URL” and so these two examples are clev-
erly namedcurl1.py andcurl2.py on www.py4inf.com/code as they imple-
ment similar functionality to thecurl command. There is also acurl3.py sam-
ple program that does this task a little more effectively, in case you actually want
to use this pattern in a program you are writing.

12.9 Glossary
BeautifulSoup: A Python library for parsing HTML documents and extracting

data from HTML documents that compensates for most of the imperfec-
tions in the HTML that browsers generally ignore. You can download the
BeautifulSoup code fromwww.crummy.com .

port: A number that generally indicates which application you are contacting
when you make a socket connection to a server. As an example, web traf�c
usually uses port 80 while email traf�c uses port 25.

scrape: When a program pretends to be a web browser and retrieves a web page,
then looks at the web page content. Often programs are following the links
in one page to �nd the next page so they can traverse a network of pagesor
a social network.

socket: A network connection between two applications where the applications
can send and receive data in either direction.

spider: The act of a web search engine retrieving a page and then all the pages
linked from a page and so on until they have nearly all of the pages on the
Internet which they use to build their search index.

12.10 Exercises

Exercise 12.1Change the socket programsocket1.py to prompt the user for the
URL so it can read any web page. You can usesplit('/') to break the URL into
its component parts so you can extract the host name for the socketconnect call.
Add error checking usingtry andexcept to handle the condition where the user
enters an improperly formatted or non-existent URL.

Exercise 12.2Change your socket program so that it counts the number of char-
acters it has received and stops displaying any text after it has shown 3000 charac-
ters. The program should retrieve the entire document and count the totalnumber
of characters and display the count of the number of characters at the end of the
document.

154 Chapter 12. Networked programs

Exercise 12.3Useurllib to replicate the previous exercise of (1) retrieving the
document from a URL, (2) displaying up to 3000 characters, and (3) counting the
overall number of characters in the document. Don't worry about the headers for
this exercise, simply show the �rst 3000 characters of the document contents.

Exercise 12.4Change theurllinks.py program to extract and count paragraph
(p) tags from the retrieved HTML document and display the count of the para-
graphs as the output of your program. Do not display the paragraph text, only
count them. Test your program on several small web pages as well as some larger
web pages.

Exercise 12.5(Advanced) Change the socket program so that it only shows data
after the headers and a blank line have been received. Remember thatrecv is
receiving characters (newlines and all), not lines.

Chapter 13

Using Web Services

Once it became easy to retrieve documents and parse documents over HTTPusing
programs, it did not take long to develop an approach where we started producing
documents that were speci�cally designed to be consumed by other programs (i.e.,
not HTML to be displayed in a browser).

There are two common formats that we use when exchanging data across theweb.
The “eXtensible Markup Language” or XML has been in use for a very long time
and is best suited for exchanging document-style data. When programs just want
to exchange dictionaries, lists, or other internal information with each other,they
use JavaScript Object Notation or JSON (seewww.json.org). We will look at
both formats.

13.1 eXtensible Markup Language - XML

XML looks very similar to HTML, but XML is more structured than HTML. Here
is a sample of an XML document:

<person>
<name>Chuck</name>
<phone type="intl">

+1 734 303 4456
</phone>
<email hide="yes"/>

</person>

Often it is helpful to think of an XML document as a tree structure where there
is a top tagperson and other tags such asphone are drawn aschildren of their
parent nodes.

156 Chapter 13. Using Web Services

������

����

	
�� ������
��������

�
��� �����
�����
����

����
���

13.2 Parsing XML

Here is a simple application that parses some XML and extracts some data ele-
ments from the XML:

import xml.etree.ElementTree as ET

data = ���
<person>

<name>Chuck</name>
<phone type="intl">

+1 734 303 4456
</phone>
<email hide="yes"/>

</person> ���

tree = ET.fromstring(data)
print � Name:� ,tree.find(� name�).text
print � Attr: � ,tree.find(� email �).get(� hide �)

Calling fromstring converts the string representation of the XML into a “tree”
of XML nodes. When the XML is in a tree, we have a series of methods we can
call to extract portions of data from the XML.

The find function searches through the XML tree and retrieves anode that
matches the speci�ed tag. Each node can have some text, some attributes (like
hide), and some “child” nodes. Each node can be the top of a tree of nodes.

Name: Chuck
Attr: yes

Using an XML parser such asElementTree has the advantage that while the
XML in this example is quite simple, it turns out there are many rules regarding
valid XML and usingElementTree allows us to extract data from XML without
worrying about the rules of XML syntax.

13.3 Looping through nodes

Often the XML has multiple nodes and we need to write a loop to process all of
the nodes. In the following program, we loop through all of theuser nodes:

13.4. JavaScript Object Notation - JSON 157

import xml.etree.ElementTree as ET

input = ���
<stuff>

<users>
<user x="2">

<id>001</id>
<name>Chuck</name>

</user>
<user x="7">

<id>009</id>
<name>Brent</name>

</user>
</users>

</stuff> ���

stuff = ET.fromstring(input)
lst = stuff.findall(� users/user �)
print � User count: � , len(lst)

for item in lst:
print � Name� , item.find(� name�).text
print � Id � , item.find(� id �).text
print � Attribute � , item.get(� x�)

The findall method retrieves a Python list of subtrees that represent theuser
structures in the XML tree. Then we can write afor loop that looks at each of
the user nodes, and prints thename andid text elements as well as thex attribute
from theuser node.

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent
Id 009
Attribute 7

13.4 JavaScript Object Notation - JSON

The JSON format was inspired by the object and array format used in the
JavaScript language. But since Python was invented before JavaScript, Python's
syntax for dictionaries and lists in�uenced the syntax of JSON. So the format of
JSON is nearly identical to a combination of Python lists and dictionaries.

Here is a JSON encoding that is roughly equivalent to the simple XML from
above:

{
"name" : "Chuck",
"phone" : {

"type" : "intl",

158 Chapter 13. Using Web Services

"number" : "+1 734 303 4456"
},
"email" : {

"hide" : "yes"
}

}

You will notice some differences. First, in XML, we can add attributes like “intl”
to the “phone” tag. In JSON, we simply have key-value pairs. Also the XML
“person” tag is gone, replaced by a set of outer curly braces.

In general, JSON structures are simpler than XML because JSON has fewer capa-
bilities than XML. But JSON has the advantage that it mapsdirectly to some com-
bination of dictionaries and lists. And since nearly all programming languages
have something equivalent to Python's dictionaries and lists, JSON is a verynatu-
ral format to have two cooperating programs exchange data.

JSON is quickly becoming the format of choice for nearly all data exchangebe-
tween applications because of its relative simplicity compared to XML.

13.5 Parsing JSON

We construct our JSON by nesting dictionaries (objects) and lists as needed. In
this example, we represent a list of users where each user is a set of key-value
pairs (i.e., a dictionary). So we have a list of dictionaries.

In the following program, we use the built-injson library to parse the JSON and
read through the data. Compare this closely to the equivalent XML data and code
above. The JSON has less detail, so we must know in advance that we are getting a
list and that the list is of users and each user is a set of key-value pairs.The JSON
is more succinct (an advantage) but also is less self-describing (a disadvantage).

import json

input = ���
[

{ "id" : "001",
"x" : "2",
"name" : "Chuck"

} ,
{ "id" : "009",

"x" : "7",
"name" : "Brent"

}
] ���

info = json.loads(input)
print � User count: � , len(info)

for item in info:

13.6. Application Programming Interfaces 159

print � Name� , item[� name�]
print � Id � , item[� id �]
print � Attribute � , item[� x�]

If you compare the code to extract data from the parsed JSON and XML you will
see that what we get fromjson.loads()is a Python list which we traverse with a
for loop, and each item within that list is a Python dictionary. Once the JSON
has been parsed, we can use the Python index operator to extract the various bits
of data for each user. We don't have to use the JSON library to dig through the
parsed JSON, since the returned data is simply native Python structures.

The output of this program is exactly the same as the XML version above.

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent
Id 009
Attribute 7

In general, there is an industry trend away from XML and towards JSON for web
services. Because the JSON is simpler and more directly maps to native data struc-
tures we already have in programming languages, the parsing and data extraction
code is usually simpler and more direct when using JSON. But XML is more self-
descriptive than JSON and so there are some applications where XML retains an
advantage. For example, most word processors store documents internally using
XML rather than JSON.

13.6 Application Programming Interfaces

We now have the ability to exchange data between applications using HyperText
Transport Protocol (HTTP) and a way to represent complex data that we are send-
ing back and forth between these applications using eXtensible Markup Language
(XML) or JavaScript Object Notation (JSON).

The next step is to begin to de�ne and document “contracts” between applications
using these techniques. The general name for these application-to-application con-
tracts isApplication Program Interfaces or APIs. When we use an API, gener-
ally one program makes a set ofservicesavailable for use by other applications
and publishes the APIs (i.e., the “rules”) that must be followed to access theser-
vices provided by the program.

When we begin to build our programs where the functionality of our program
includes access to services provided by other programs, we call the approach a
Service-Oriented Architectureor SOA. A SOA approach is one where our over-
all application makes use of the services of other applications. A non-SOA ap-
proach is where the application is a single standalone application which contains
all of the code necessary to implement the application.

160 Chapter 13. Using Web Services

We see many examples of SOA when we use the web. We can go to a single web
site and book air travel, hotels, and automobiles all from a single site. The data
for hotels is not stored on the airline computers. Instead, the airline computers
contact the services on the hotel computers and retrieve the hotel data andpresent
it to the user. When the user agrees to make a hotel reservation using the airline
site, the airline site uses another web service on the hotel systems to actually make
the reservation. And when it comes time to charge your credit card for the whole
transaction, still other computers become involved in the process.

����
�����	

�����

����	
����������

�����

��	��
����������

�����

�����	
���	�����

���

���

���

A Service-Oriented Architecture has many advantages including: (1) we always
maintain only one copy of data (this is particularly important for things like hotel
reservations where we do not want to over-commit) and (2) the owners ofthe data
can set the rules about the use of their data. With these advantages, an SOA system
must be carefully designed to have good performance and meet the user's needs.

When an application makes a set of services in its API available over the web,we
call theseweb services.

13.7 Google geocoding web service

Google has an excellent web service that allows us to make use of their large
database of geographic information. We can submit a geographical search string
like “Ann Arbor, MI” to their geocoding API and have Google return its best
guess as to where on a map we might �nd our search string and tell us aboutthe
landmarks nearby.

The geocoding service is free but rate limited so you cannot make unlimited use
of the API in a commercial application. But if you have some survey data where
an end user has entered a location in a free-format input box, you can use this API
to clean up your data quite nicely.

13.7. Google geocoding web service 161

When you are using a free API like Google's geocoding API, you need to be re-
spectful in your use of these resources. If too many people abuse the service,
Google might drop or signi�cantly curtail its free service.

You can read the online documentation for this service, but it is quite simple
and you can even test it using a browser by typing the following URL into your
browser:

http://maps.googleapis.com/maps/api/geocode/json?se nsor=false&
address=Ann+Arbor%2C+MI

Make sure to unwrap the URL and remove any spaces from the URL before past-
ing it into your browser.

The following is a simple application to prompt the user for a search string, call
the Google geocoding API, and extract information from the returned JSON.

import urllib
import json

serviceurl = � http://maps.googleapis.com/maps/api/geocode/json? �

while True:
address = raw_input(� Enter location: �)
if len(address) < 1 : break

url = serviceurl + urllib.urlencode({ � sensor � : � false � ,
� address � : address})

print � Retrieving � , url
uh = urllib.urlopen(url)
data = uh.read()
print � Retrieved � ,len(data), � characters �

try: js = json.loads(str(data))
except: js = None
if � status � not in js or js[� status �] != � OK� :

print � ==== Failure To Retrieve ==== �
print data
continue

print json.dumps(js, indent=4)

lat = js["results"][0]["geometry"]["location"]["lat"]
lng = js["results"][0]["geometry"]["location"]["lng"]
print � lat � ,lat, � lng � ,lng
location = js[� results �][0][� formatted_address �]
print location

The program takes the search string and constructs a URL with the searchstring
as a properly encoded parameter and then usesurllib to retrieve the text from the
Google geocoding API. Unlike a �xed web page, the data we get dependson the
parameters we send and the geographical data stored in Google's servers.

162 Chapter 13. Using Web Services

Once we retrieve the JSON data, we parse it with thejson library and do a few
checks to make sure that we received good data, then extract the information that
we are looking for.

The output of the program is as follows (some of the returned JSON has been
removed):

$ python geojson.py
Enter location: Ann Arbor, MI
Retrieving http://maps.googleapis.com/maps/api/

geocode/json?sensor=false&address=Ann+Arbor%2C+MI
Retrieved 1669 characters
{

"status": "OK",
"results": [

{
"geometry": {

"location_type": "APPROXIMATE",
"location": {

"lat": 42.2808256,
"lng": -83.7430378

}
},
"address_components": [

{
"long_name": "Ann Arbor",
"types": [

"locality",
"political"

],
"short_name": "Ann Arbor"

}
],
"formatted_address": "Ann Arbor, MI, USA",
"types": [

"locality",
"political"

]
}

]
}
lat 42.2808256 lng -83.7430378
Ann Arbor, MI, USA
Enter location:

You can downloadwww.py4inf.com/code/geojson.py andwww.py4inf.com/
code/geoxml.py to explore the JSON and XML variants of the Google geocoding
API.

13.8 Security and API usage

It is quite common that you need some kind of “API key” to make use of a vendor's
API. The general idea is that they want to know who is using their servicesand

13.8. Security and API usage 163

how much each user is using. Perhaps they have free and pay tiers of their services
or have a policy that limits the number of requests that a single individual can make
during a particular time period.

Sometimes once you get your API key, you simply include the key as part of POST
data or perhaps as a parameter on the URL when calling the API.

Other times, the vendor wants increased assurance of the source of the requests and
so they add expect you to send cryptographically signed messages usingshared
keys and secrets. A very common technology that is used to sign requests over
the Internet is calledOAuth. You can read more about the OAuth protocol at
http://www.oauth.net .

As the Twitter API became increasingly valuable, Twitter went from an open and
public API to an API that required the use of OAuth signatures on each APIre-
quest. Thankfully there are still a number of convenient and free OAuth libraries
so you can avoid writing an OAuth implementation from scratch by reading the
speci�cation. These libraries are of varying complexity and have varyingdegrees
of richness. The OAuth web site has information about various OAuth libraries.

For this next sample program we will download the �lestwurl.py , hidden.py,
oauth.py, and twitter1.py from www.py4inf.com/code and put them all in a
folder on your computer.

To make use of these programs you will need to have a Twitter account, and au-
thorize your Python code as an application, set up a key, secret, token and token
secret. You will edit the �lehidden.py and put these four strings into the appro-
priate variables in the �le:

def auth() :
return { "consumer_key" : "h7L...GNg",

"consumer_secret" : "dNK...7Q",
"token_key" : "101...GI",
"token_secret" : "H0yM...Bo" }

The Twitter web service are accessed using a URL like this:

https://api.twitter.com/1.1/statuses/user_timeline. json

But once all of the security information has been added, the URL will look more
like:

https://api.twitter.com/1.1/statuses/user_timeline. json?count=2
&oauth_version=1.0&oauth_token=101...SGI&screen_nam e=drchuck
&oauth_nonce=09239679&oauth_timestamp=1380395644
&oauth_signature=rLK...BoD&oauth_consumer_key=h7Lu. ..GNg
&oauth_signature_method=HMAC-SHA1

You can read the OAuth speci�cation if you want to know more about the mean-
ing of the various parameters that are added to meet the security requirements of
OAuth.

164 Chapter 13. Using Web Services

For the programs we run with Twitter, we hide all the complexity in the �les
oauth.py andtwurl.py . We simply set the secrets inhidden.py and then send the
desired URL to thetwurl.augment() function and the library code adds all the
necessary parameters to the URL for us.

This program (twitter1.py) retrieves the timeline for a particular Twitter user and
returns it to us in JSON format in a string. We simply print the �rst 250 characters
of the string:

import urllib
import twurl

TWITTER_URL=� https://api.twitter.com/1.1/statuses/user_timeline. json �

while True:
print ��
acct = raw_input(� Enter Twitter Account: �)
if (len(acct) < 1) : break
url = twurl.augment(TWITTER_URL,

{ � screen_name � : acct, � count � : � 2� })
print � Retrieving � , url
connection = urllib.urlopen(url)
data = connection.read()
print data[:250]
headers = connection.info().dict
print headers
print � Remaining � , headers[� x-rate-limit-remaining �]

When the program runs it produces the following output:

Enter Twitter Account:drchuck
Retrieving https://api.twitter.com/1.1/ ...
[{"created_at":"Sat Sep 28 17:30:25 +0000 2013","
id":384007200990982144,"id_str":"384007200990982144 ",
"text":"RT @fixpert: See how the Dutch handle traffic
intersections: http:\/\/t.co\/tIiVWtEhj4\n#brilliant ",
"source":"web","truncated":false,"in_rep
Remaining 178

Enter Twitter Account:fixpert
Retrieving https://api.twitter.com/1.1/ ...
[{"created_at":"Sat Sep 28 18:03:56 +0000 2013",
"id":384015634108919808,"id_str":"38401563410891980 8",
"text":"3 months after my freak bocce ball accident,
my wedding ring fits again! :)\n\nhttps:\/\/t.co\/2XmHPx 7kgX",
"source":"web","truncated":false,
Remaining 177

Enter Twitter Account:

Along with the returned timeline data, Twitter also returns metadata about the
request in the HTTP response headers. One header in particular,x-rate-limit-
remaining, informs us how many more requests we can make before we will be

13.8. Security and API usage 165

shut off for a short time period. You can see that our remaining retrievalsdrop by
one each time we make a request to the API.

In the following example, we retrieve a user's Twitter friends, parse the returned
JSON, and extract some of the information about the friends. We also dump the
JSON after parsing and “pretty-print” it with an indent of four characters to allow
us to pore through the data when we want to extract more �elds.

import urllib
import twurl
import json

TWITTER_URL = � https://api.twitter.com/1.1/friends/list.json �

while True:
print ��
acct = raw_input(� Enter Twitter Account: �)
if (len(acct) < 1) : break
url = twurl.augment(TWITTER_URL,

{ � screen_name � : acct, � count � : � 5� })
print � Retrieving � , url
connection = urllib.urlopen(url)
data = connection.read()
headers = connection.info().dict
print � Remaining � , headers[� x-rate-limit-remaining �]
js = json.loads(data)
print json.dumps(js, indent=4)

for u in js[� users �] :
print u[� screen_name �]
s = u[� status �][� text �]
print � � ,s[:50]

Since the JSON becomes a set of nested Python lists and dictionaries, we canuse a
combination of the index operation andfor loops to wander through the returned
data structures with very little Python code.

The output of the program looks as follows (some of the data items are shortened
to �t on the page):

Enter Twitter Account:drchuck
Retrieving https://api.twitter.com/1.1/friends ...
Remaining 14
{

"next_cursor": 1444171224491980205,
"users": [

{
"id": 662433,
"followers_count": 28725,
"status": {

"text": "@jazzychad I just bought one .__.",
"created_at": "Fri Sep 20 08:36:34 +0000 2013",
"retweeted": false,

},

166 Chapter 13. Using Web Services

"location": "San Francisco, California",
"screen_name": "leahculver",
"name": "Leah Culver",

},
{

"id": 40426722,
"followers_count": 2635,
"status": {

"text": "RT @WSJ: Big employers like Google ...",
"created_at": "Sat Sep 28 19:36:37 +0000 2013",

},
"location": "Victoria Canada",
"screen_name": "_valeriei",
"name": "Valerie Irvine",

],
"next_cursor_str": "1444171224491980205"

}
leahculver

@jazzychad I just bought one .__.
_valeriei

RT @WSJ: Big employers like Google, AT&T are h
ericbollens

RT @lukew: sneak peek: my LONG take on the good &a
halherzog

Learning Objects is 10. We had a cake with the LO,
scweeker

@DeviceLabDC love it! Now where so I get that "etc

Enter Twitter Account:

The last bit of the output is where we see the for loop reading the �ve most recent
“friends” of thedrchuck Twitter account and printing the most recent status for
each friend. There is a great deal more data available in the returned JSON. If
you look in the output of the program, you can also see that the “�nd the friends”
of a particular account has a different rate limitation than the number of timeline
queries we are allowed to run per time period.

These secure API keys allow Twitter to have solid con�dence that they know who
is using their API and data and at what level. The rate-limiting approach allowsus
to do simple, personal data retrievals but does not allow us to build a product that
pulls data from their API millions of times per day.

13.9 Glossary

API: Application Program Interface - A contract between applications that de-
�nes the patterns of interaction between two application components.

ElementTree: A built-in Python library used to parse XML data.

JSON: JavaScript Object Notation. A format that allows for the markup of struc-
tured data based on the syntax of JavaScript Objects.

13.10. Exercises 167

SOA: Service-Oriented Architecture. When an application is made of compo-
nents connected across a network.

XML: eXtensible Markup Language. A format that allows for the markup of
structured data.

13.10 Exercises

Exercise 13.1Change either thewww.py4inf.com/code/geojson.py or www.
py4inf.com/code/geoxml.py to print out the two-character country code from
the retrieved data. Add error checking so your program does not traceback if the
country code is not there. Once you have it working, search for “Atlantic Ocean”
and make sure it can handle locations that are not in any country.

168 Chapter 13. Using Web Services

Chapter 14

Using databases and Structured
Query Language (SQL)

14.1 What is a database?

A databaseis a �le that is organized for storing data. Most databases are orga-
nized like a dictionary in the sense that they map from keys to values. The biggest
difference is that the database is on disk (or other permanent storage),so it persists
after the program ends. Because a database is stored on permanent storage, it can
store far more data than a dictionary, which is limited to the size of the memory in
the computer.

Like a dictionary, database software is designed to keep the inserting and accessing
of data very fast, even for large amounts of data. Database software maintains its
performance by buildingindexesas data is added to the database to allow the
computer to jump quickly to a particular entry.

There are many different database systems which are used for a wide variety of
purposes including: Oracle, MySQL, Microsoft SQL Server, PostgreSQL, and
SQLite. We focus on SQLite in this book because it is a very common database
and is already built into Python. SQLite is designed to beembeddedinto other
applications to provide database support within the application. For example,the
Firefox browser also uses the SQLite database internally as do many other prod-
ucts.

http://sqlite.org/

SQLite is well suited to some of the data manipulation problems that we see in In-
formatics such as the Twitter spidering application that we describe in this chapter.

170 Chapter 14. Using databases and Structured Query Language(SQL)

14.2 Database concepts

When you �rst look at a database it looks like a spreadsheet with multiple sheets.
The primary data structures in a database are:tables, rows, andcolumns.

�����

���

	��
��

��

�
���

��������

������
��

In technical descriptions of relational databases the concepts of table, row, and col-
umn are more formally referred to asrelation, tuple, andattribute , respectively.
We will use the less formal terms in this chapter.

14.3 SQLite manager Firefox add-on

While this chapter will focus on using Python to work with data in SQLite database
�les, many operations can be done more conveniently using a Firefox add-on
called theSQLite Database Managerwhich is freely available from:

https://addons.mozilla.org/en-us/firefox/addon/sqli te-manager/

Using the browser you can easily create tables, insert data, edit data, orrun simple
SQL queries on the data in the database.

In a sense, the database manager is similar to a text editor when working with text
�les. When you want to do one or very few operations on a text �le, you can just
open it in a text editor and make the changes you want. When you have many
changes that you need to do to a text �le, often you will write a simple Python
program. You will �nd the same pattern when working with databases. You will
do simple operations in the database manager and more complex operations will
be most conveniently done in Python.

14.4 Creating a database table

Databases require more de�ned structure than Python lists or dictionaries1.

When we create a databasetable we must tell the database in advance the names
of each of thecolumnsin the table and the type of data which we are planning to

1SQLite actually does allow some �exibility in the type of data stored in a column, but we will
keep our data types strict in this chapter so the concepts apply equally to other database systems
such as MySQL.

14.4. Creating a database table 171

store in eachcolumn. When the database software knows the type of data in each
column, it can choose the most ef�cient way to store and look up the data based
on the type of data.

You can look at the various data types supported by SQLite at the following url:

http://www.sqlite.org/datatypes.html

De�ning structure for your data up front may seem inconvenient at the beginning,
but the payoff is fast access to your data even when the database contains a large
amount of data.

The code to create a database �le and a table namedTracks with two columns in
the database is as follows:

import sqlite3

conn = sqlite3.connect(� music.sqlite3 �)
cur = conn.cursor()

cur.execute(� DROP TABLE IF EXISTS Tracks �)
cur.execute(� CREATE TABLE Tracks (title TEXT, plays INTEGER) �)

conn.close()

The connect operation makes a “connection” to the database stored in the �le
music.sqlite3 in the current directory. If the �le does not exist, it will be cre-
ated. The reason this is called a “connection” is that sometimes the database is
stored on a separate “database server” from the server on which we are running
our application. In our simple examples the database will just be a local �le in the
same directory as the Python code we are running.

A cursor is like a �le handle that we can use to perform operations on the data
stored in the database. Callingcursor() is very similar conceptually to calling
open() when dealing with text �les.

�
�
�
�
�
�

���	

	��	�

��������
������

������

���	��

Once we have the cursor, we can begin to execute commands on the contentsof
the database using theexecute() method.

Database commands are expressed in a special language that has been standard-
ized across many different database vendors to allow us to learn a single database

172 Chapter 14. Using databases and Structured Query Language(SQL)

language. The database language is calledStructured Query Languageor SQL
for short.

http://en.wikipedia.org/wiki/SQL

In our example, we are executing two SQL commands in our database. As a
convention, we will show the SQL keywords in uppercase and the parts ofthe
command that we are adding (such as the table and column names) will be shown
in lowercase.

The �rst SQL command removes theTracks table from the database if it exists.
This pattern is simply to allow us to run the same program to create theTracks
table over and over again without causing an error. Note that theDROP TABLE
command deletes the table and all of its contents from the database (i.e., there is
no “undo”).

cur.execute(� DROP TABLE IF EXISTS Tracks �)

The second command creates a table namedTracks with a text column named
title and an integer column namedplays .

cur.execute(� CREATE TABLE Tracks (title TEXT, plays INTEGER) �)

Now that we have created a table namedTracks , we can put some data into that
table using the SQLINSERT operation. Again, we begin by making a connection
to the database and obtaining thecursor . We can then execute SQL commands
using the cursor.

The SQLINSERT command indicates which table we are using and then de�nes a
new row by listing the �elds we want to include(title, plays) followed by the
VALUESwe want placed in the new row. We specify the values as question marks
(?, ?) to indicate that the actual values are passed in as a tuple('My Way',
15) as the second parameter to theexecute() call.

import sqlite3

conn = sqlite3.connect(� music.sqlite3 �)
cur = conn.cursor()

cur.execute(� INSERT INTO Tracks (title, plays) VALUES (?, ?) � ,
(� Thunderstruck � , 20))

cur.execute(� INSERT INTO Tracks (title, plays) VALUES (?, ?) � ,
(� My Way� , 15))

conn.commit()

print � Tracks: �
cur.execute(� SELECT title, plays FROM Tracks �)
for row in cur :

print row

cur.execute(� DELETE FROM Tracks WHERE plays < 100�)
conn.commit()

14.5. Structured Query Language summary 173

cur.close()

First weINSERT two rows into our table and usecommit() to force the data to be
written to the database �le.

� �����

���	

����
�������

������

���

��

�	���

Then we use theSELECT command to retrieve the rows we just inserted from
the table. On theSELECTcommand, we indicate which columns we would like
(title, plays) and indicate which table we want to retrieve the data from. After
we execute theSELECTstatement, the cursor is something we can loop through in
a for statement. For ef�ciency, the cursor does not read all of the data from the
database when we execute theSELECT statement. Instead, the data is read on
demand as we loop through the rows in thefor statement.

The output of the program is as follows:

Tracks:
(u � Thunderstruck � , 20)
(u � My Way� , 15)

Our for loop �nds two rows, and each row is a Python tuple with the �rst value as
thetitle and the second value as the number ofplays . Do not be concerned that
the title strings are shown starting withu' . This is an indication that the strings
areUnicodestrings that are capable of storing non-Latin character sets.

At the very end of the program, we execute an SQL command toDELETE the
rows we have just created so we can run the program over and over. TheDELETE
command shows the use of aWHEREclause that allows us to express a selection
criterion so that we can ask the database to apply the command to only the rows
that match the criterion. In this example the criterion happens to apply to all the
rows so we empty the table out so we can run the program repeatedly. Afterthe
DELETEis performed, we also callcommit() to force the data to be removed from
the database.

14.5 Structured Query Language summary

So far, we have been using the Structured Query Language in our Python examples
and have covered many of the basics of the SQL commands. In this section, we
look at the SQL language in particular and give an overview of SQL syntax.

Since there are so many different database vendors, the Structured Query Lan-
guage (SQL) was standardized so we could communicate in a portable mannerto
database systems from multiple vendors.

174 Chapter 14. Using databases and Structured Query Language(SQL)

A relational database is made up of tables, rows, and columns. The columns
generally have a type such as text, numeric, or date data. When we create atable,
we indicate the names and types of the columns:

CREATE TABLE Tracks (title TEXT, plays INTEGER)

To insert a row into a table, we use the SQLINSERT command:

INSERT INTO Tracks (title, plays) VALUES (� My Way� , 15)

The INSERT statement speci�es the table name, then a list of the �elds/columns
that you would like to set in the new row, and then the keywordVALUESand a list
of corresponding values for each of the �elds.

The SQLSELECTcommand is used to retrieve rows and columns from a database.
TheSELECTstatement lets you specify which columns you would like to retrieve
as well as aWHEREclause to select which rows you would like to see. It also allows
an optionalORDER BYclause to control the sorting of the returned rows.

SELECT * FROM Tracks WHERE title = � My Way�

Using* indicates that you want the database to return all of the columns for each
row that matches theWHEREclause.

Note, unlike in Python, in a SQLWHEREclause we use a single equal sign to
indicate a test for equality rather than a double equal sign. Other logical operations
allowed in aWHEREclause include<, >, <=, >=, != , as well asANDandORand
parentheses to build your logical expressions.

You can request that the returned rows be sorted by one of the �elds asfollows:

SELECT title,plays FROM Tracks ORDER BY title

To remove a row, you need aWHEREclause on an SQLDELETEstatement. The
WHEREclause determines which rows are to be deleted:

DELETE FROM Tracks WHERE title = � My Way�

It is possible toUPDATEa column or columns within one or more rows in a table
using the SQLUPDATEstatement as follows:

UPDATE Tracks SET plays = 16 WHERE title = � My Way�

TheUPDATEstatement speci�es a table and then a list of �elds and values to change
after theSETkeyword and then an optionalWHEREclause to select the rows that are
to be updated. A singleUPDATEstatement will change all of the rows that match
theWHEREclause. If aWHEREclause is not speci�ed, it performs theUPDATEon all
of the rows in the table.

These four basic SQL commands (INSERT, SELECT, UPDATE, and DELETE)
allow the four basic operations needed to create and maintain data.

14.6. Spidering Twitter using a database 175

14.6 Spidering Twitter using a database

In this section, we will create a simple spidering program that will go through
Twitter accounts and build a database of them.Note: Be very careful when running
this program. You do not want to pull too much data or run the program fortoo
long and end up having your Twitter access shut off.

One of the problems of any kind of spidering program is that it needs to be able
to be stopped and restarted many times and you do not want to lose the data that
you have retrieved so far. You don't want to always restart your data retrieval at
the very beginning so we want to store data as we retrieve it so our program can
start back up and pick up where it left off.

We will start by retrieving one person's Twitter friends and their statuses,looping
through the list of friends, and adding each of the friends to a database tobe
retrieved in the future. After we process one person's Twitter friends,we check
in our database and retrieve one of the friends of the friend. We do this over and
over, picking an “unvisited” person, retrieving their friend list, and adding friends
we have not seen to our list for a future visit.

We also track how many times we have seen a particular friend in the database to
get some sense of their “popularity”.

By storing our list of known accounts and whether we have retrieved the account
or not, and how popular the account is in a database on the disk of the computer,
we can stop and restart our program as many times as we like.

This program is a bit complex. It is based on the code from the exercise earlier in
the book that uses the Twitter API.

Here is the source code for our Twitter spidering application:

import urllib
import twurl
import json
import sqlite3

TWITTER_URL = � https://api.twitter.com/1.1/friends/list.json �

conn = sqlite3.connect(� spider.sqlite3 �)
cur = conn.cursor()

cur.execute(���
CREATE TABLE IF NOT EXISTS Twitter
(name TEXT, retrieved INTEGER, friends INTEGER) ���)

while True:
acct = raw_input(� Enter a Twitter account, or quit: �)
if (acct == � quit �) : break
if (len(acct) < 1) :

cur.execute(� SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1 �)
try:

176 Chapter 14. Using databases and Structured Query Language(SQL)

acct = cur.fetchone()[0]
except:

print � No unretrieved Twitter accounts found �
continue

url = twurl.augment(TWITTER_URL,
{ � screen_name � : acct, � count � : � 20� })

print � Retrieving � , url
connection = urllib.urlopen(url)
data = connection.read()
headers = connection.info().dict
print � Remaining � , headers[� x-rate-limit-remaining �]
js = json.loads(data)
print json.dumps(js, indent=4)

cur.execute(� UPDATE Twitter SET retrieved=1 WHERE name = ? � , (acct,))

countnew = 0
countold = 0
for u in js[� users �] :

friend = u[� screen_name �]
print friend
cur.execute(� SELECT friends FROM Twitter WHERE name = ? LIMIT 1 � ,

(friend,))
try:

count = cur.fetchone()[0]
cur.execute(� UPDATE Twitter SET friends = ? WHERE name = ? � ,

(count+1, friend))
countold = countold + 1

except:
cur.execute(��� INSERT INTO Twitter (name, retrieved, friends)

VALUES (?, 0, 1) ��� , (friend,))
countnew = countnew + 1

print � New accounts= � ,countnew, � revisited= � ,countold
conn.commit()

cur.close()

Our database is stored in the �lespider.sqlite3 and it has one table named
Twitter . Each row in theTwitter table has a column for the account name,
whether we have retrieved the friends of this account, and how many times this
account has been “friended”.

In the main loop of the program, we prompt the user for a Twitter account name
or “quit” to exit the program. If the user enters a Twitter account, we retrieve the
list of friends and statuses for that user and add each friend to the database if not
already in the database. If the friend is already in the list, we add 1 to thefriends
�eld in the row in the database.

If the user presses enter, we look in the database for the next Twitter account that
we have not yet retrieved, retrieve the friends and statuses for that account, add
them to the database or update them, and increase theirfriends count.

Once we retrieve the list of friends and statuses, we loop through all of theuser

14.6. Spidering Twitter using a database 177

items in the returned JSON and retrieve thescreen_name for each user. Then
we use theSELECT statement to see if we already have stored this particular
screen_name in the database and retrieve the friend count (friends) if the record
exists.

countnew = 0
countold = 0
for u in js[� users �] :

friend = u[� screen_name �]
print friend
cur.execute(� SELECT friends FROM Twitter WHERE name = ? LIMIT 1 � ,

(friend,))
try:

count = cur.fetchone()[0]
cur.execute(� UPDATE Twitter SET friends = ? WHERE name = ? � ,

(count+1, friend))
countold = countold + 1

except:
cur.execute(��� INSERT INTO Twitter (name, retrieved, friends)

VALUES (?, 0, 1) ��� , (friend,))
countnew = countnew + 1

print � New accounts= � ,countnew, � revisited= � ,countold
conn.commit()

Once the cursor executes theSELECTstatement, we must retrieve the rows. We
could do this with afor statement, but since we are only retrieving one row (LIMIT
1), we can use thefetchone() method to fetch the �rst (and only) row that is the
result of theSELECToperation. Sincefetchone() returns the row as atuple (even
though there is only one �eld), we take the �rst value from the tuple using[0] to
get the current friend count into the variablecount .

If this retrieval is successful, we use the SQLUPDATEstatement with aWHERE
clause to add 1 to thefriends column for the row that matches the friend's ac-
count. Notice that there are two placeholders (i.e., question marks) in the SQL,
and the second parameter to theexecute() is a two-element tuple that holds the
values to be substituted into the SQL in place of the question marks.

If the code in thetry block fails, it is probably because no record matched the
WHERE name = ?clause on the SELECT statement. So in theexcept block, we
use the SQLINSERT statement to add the friend'sscreen_name to the table with
an indication that we have not yet retrieved thescreen_name and set the friend
count to zero.

So the �rst time the program runs and we enter a Twitter account, the program
runs as follows:

Enter a Twitter account, or quit: drchuck
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 20 revisited= 0
Enter a Twitter account, or quit: quit

Since this is the �rst time we have run the program, the database is empty and we
create the database in the �lespider.sqlite3 and add a table namedTwitter

178 Chapter 14. Using databases and Structured Query Language(SQL)

to the database. Then we retrieve some friends and add them all to the database
since the database is empty.

At this point, we might want to write a simple database dumper to take a look at
what is in ourspider.sqlite3 �le:

import sqlite3

conn = sqlite3.connect(� spider.sqlite3 �)
cur = conn.cursor()
cur.execute(� SELECT * FROM Twitter �)
count = 0
for row in cur :

print row
count = count + 1

print count, � rows. �
cur.close()

This program simply opens the database and selects all of the columns of all of the
rows in the tableTwitter , then loops through the rows and prints out each row.

If we run this program after the �rst execution of our Twitter spider above, its
output will be as follows:

(u � opencontent � , 0, 1)
(u � lhawthorn � , 0, 1)
(u � steve_coppin � , 0, 1)
(u � davidkocher � , 0, 1)
(u � hrheingold � , 0, 1)
...
20 rows.

We see one row for eachscreen_name , that we have not retrieved the data for that
screen_name , and everyone in the database has one friend.

Now our database re�ects the retrieval of the friends of our �rst Twitteraccount
(drchuck). We can run the program again and tell it to retrieve the friends of the
next “unprocessed” account by simply pressing enter instead of a Twitter account
as follows:

Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 18 revisited= 2
Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 17 revisited= 3
Enter a Twitter account, or quit: quit

Since we pressed enter (i.e., we did not specify a Twitter account), the following
code is executed:

if (len(acct) < 1) :
cur.execute(� SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1 �)
try:

14.6. Spidering Twitter using a database 179

acct = cur.fetchone()[0]
except:

print � No unretrieved twitter accounts found �
continue

We use the SQLSELECTstatement to retrieve the name of the �rst (LIMIT 1) user
who still has their “have we retrieved this user” value set to zero. We also use the
fetchone()[0] pattern within a try/except block to either extract ascreen_name
from the retrieved data or put out an error message and loop back up.

If we successfully retrieved an unprocessedscreen_name , we retrieve their data
as follows:

url = twurl.augment(TWITTER_URL, { � screen_name � : acct, � count � : � 20� })
print � Retrieving � , url
connection = urllib.urlopen(url)
data = connection.read()
js = json.loads(data)

cur.execute(� UPDATE Twitter SET retrieved=1 WHERE name = ? � , (acct,))

Once we retrieve the data successfully, we use theUPDATEstatement to set the
retrieved column to 1 to indicate that we have completed the retrieval of the
friends of this account. This keeps us from retrieving the same data over and over
and keeps us progressing forward through the network of Twitter friends.

If we run the friend program and press enter twice to retrieve the next unvisited
friend's friends, then run the dumping program, it will give us the followingout-
put:

(u � opencontent � , 1, 1)
(u � lhawthorn � , 1, 1)
(u � steve_coppin � , 0, 1)
(u � davidkocher � , 0, 1)
(u � hrheingold � , 0, 1)
...
(u � cnxorg � , 0, 2)
(u � knoop � , 0, 1)
(u � kthanos � , 0, 2)
(u � LectureTools � , 0, 1)
...
55 rows.

We can see that we have properly recorded that we have visitedlhawthorn
and opencontent . Also the accountscnxorg and kthanos already have two
followers. Since we now have retrieved the friends of three people (drchuck ,
opencontent , andlhawthorn) our table has 55 rows of friends to retrieve.

Each time we run the program and press enter it will pick the next unvisited ac-
count (e.g., the next account will besteve_coppin), retrieve their friends, mark
them as retrieved, and for each of the friends ofsteve_coppin either add them
to the end of the database or update their friend count if they are already inthe
database.

180 Chapter 14. Using databases and Structured Query Language(SQL)

Since the program's data is all stored on disk in a database, the spidering activity
can be suspended and resumed as many times as you like with no loss of data.

14.7 Basic data modeling

The real power of a relational database is when we create multiple tables andmake
links between those tables. The act of deciding how to break up your application
data into multiple tables and establishing the relationships between the tables is
calleddata modeling. The design document that shows the tables and their rela-
tionships is called adata model.

Data modeling is a relatively sophisticated skill and we will only introduce the
most basic concepts of relational data modeling in this section. For more detail on
data modeling you can start with:

http://en.wikipedia.org/wiki/Relational_model

Let's say for our Twitter spider application, instead of just counting a person's
friends, we wanted to keep a list of all of the incoming relationships so we could
�nd a list of everyone who is following a particular account.

Since everyone will potentially have many accounts that follow them, we cannot
simply add a single column to ourTwitter table. So we create a new table that
keeps track of pairs of friends. The following is a simple way of making sucha
table:

CREATE TABLE Pals (from_friend TEXT, to_friend TEXT)

Each time we encounter a person whodrchuck is following, we would insert a
row of the form:

INSERT INTO Pals (from_friend,to_friend) VALUES (� drchuck � , � lhawthorn �)

As we are processing the 20 friends from thedrchuck Twitter feed, we will insert
20 records with “drchuck” as the �rst parameter so we will end up duplicating the
string many times in the database.

This duplication of string data violates one of the best practices fordatabase nor-
malization which basically states that we should never put the same string data
in the database more than once. If we need the data more than once, we create a
numerickey for the data and reference the actual data using this key.

In practical terms, a string takes up a lot more space than an integer on the disk
and in the memory of our computer, and takes more processor time to compare
and sort. If we only have a few hundred entries, the storage and processor time
hardly matters. But if we have a million people in our database and a possibility
of 100 million friend links, it is important to be able to scan data as quickly as
possible.

14.7. Basic data modeling 181

We will store our Twitter accounts in a table namedPeople instead of theTwitter
table used in the previous example. ThePeople table has an additional column
to store the numeric key associated with the row for this Twitter user. SQLite has
a feature that automatically adds the key value for any row we insert into a table
using a special type of data column (INTEGER PRIMARY KEY).

We can create thePeople table with this additionalid column as follows:

CREATE TABLE People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R)

Notice that we are no longer maintaining a friend count in each row of thePeople
table. When we selectINTEGER PRIMARY KEYas the type of ourid column,
we are indicating that we would like SQLite to manage this column and assign a
unique numeric key to each row we insert automatically. We also add the keyword
UNIQUEto indicate that we will not allow SQLite to insert two rows with the same
value forname.

Now instead of creating the tablePals above, we create a table calledFollows
with two integer columnsfrom_id andto_id and a constraint on the table that the
combinationof from_id andto_id must be unique in this table (i.e., we cannot
insert duplicate rows) in our database.

CREATE TABLE Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))

When we addUNIQUEclauses to our tables, we are communicating a set of rules
that we are asking the database to enforce when we attempt to insert records. We
are creating these rules as a convenience in our programs, as we will seein a
moment. The rules both keep us from making mistakes and make it simpler to
write some of our code.

In essence, in creating thisFollows table, we are modelling a “relationship” where
one person “follows” someone else and representing it with a pair of numbers in-
dicating that (a) the people are connected and (b) the direction of the relationship.

�� ����

����

	
����
�����������

��

�

��
����	
�������

�
����	

�

� �

����	
�	

�

�

�
�

�������
�
������������

�
�

�

� �

���
���

182 Chapter 14. Using databases and Structured Query Language(SQL)

14.8 Programming with multiple tables

We will now redo the Twitter spider program using two tables, the primary keys,
and the key references as described above. Here is the code for the new version of
the program:

import urllib
import twurl
import json
import sqlite3

TWITTER_URL = � https://api.twitter.com/1.1/friends/list.json �

conn = sqlite3.connect(� friends.sqlitesqlite3 �)
cur = conn.cursor()

cur.execute(��� CREATE TABLE IF NOT EXISTS People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R) ���)

cur.execute(��� CREATE TABLE IF NOT EXISTS Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id)) ���)

while True:
acct = raw_input(� Enter a Twitter account, or quit: �)
if (acct == � quit �) : break
if (len(acct) < 1) :

cur.execute(��� SELECT id, name FROM People
WHERE retrieved = 0 LIMIT 1 ���)

try:
(id, acct) = cur.fetchone()

except:
print � No unretrieved Twitter accounts found �
continue

else:
cur.execute(� SELECT id FROM People WHERE name = ? LIMIT 1� ,

(acct,))
try:

id = cur.fetchone()[0]
except:

cur.execute(��� INSERT OR IGNORE INTO People (name, retrieved)
VALUES (?, 0) ��� , (acct,))

conn.commit()
if cur.rowcount != 1 :

print � Error inserting account: � ,acct
continue

id = cur.lastrowid

url = twurl.augment(TWITTER_URL,
{ � screen_name � : acct, � count � : � 20� })

print � Retrieving account � , acct
connection = urllib.urlopen(url)
data = connection.read()
headers = connection.info().dict
print � Remaining � , headers[� x-rate-limit-remaining �]

js = json.loads(data)

14.8. Programming with multiple tables 183

print json.dumps(js, indent=4)

cur.execute(� UPDATE People SET retrieved=1 WHERE name = ? � , (acct,))

countnew = 0
countold = 0
for u in js[� users �] :

friend = u[� screen_name �]
print friend
cur.execute(� SELECT id FROM People WHERE name = ? LIMIT 1� ,

(friend,))
try:

friend_id = cur.fetchone()[0]
countold = countold + 1

except:
cur.execute(��� INSERT OR IGNORE INTO People (name, retrieved)

VALUES (?, 0) ��� , (friend,))
conn.commit()
if cur.rowcount != 1 :

print � Error inserting account: � ,friend
continue

friend_id = cur.lastrowid
countnew = countnew + 1

cur.execute(��� INSERT OR IGNORE INTO Follows (from_id, to_id)
VALUES (?, ?) ��� , (id, friend_id))

print � New accounts= � ,countnew, � revisited= � ,countold
conn.commit()

cur.close()

This program is starting to get a bit complicated, but it illustrates the patterns that
we need to use when we are using integer keys to link tables. The basic patterns
are:

1. Create tables with primary keys and constraints.

2. When we have a logical key for a person (i.e., account name) and we need
the id value for the person, depending on whether or not the person is al-
ready in thePeople table we either need to: (1) look up the person in the
People table and retrieve theid value for the person or (2) add the person
to thePeople table and get theid value for the newly added row.

3. Insert the row that captures the “follows” relationship.

We will cover each of these in turn.

14.8.1 Constraints in database tables

As we design our table structures, we can tell the database system that we would
like it to enforce a few rules on us. These rules help us from making mistakesand
introducing incorrect data into out tables. When we create our tables:

184 Chapter 14. Using databases and Structured Query Language(SQL)

cur.execute(��� CREATE TABLE IF NOT EXISTS People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R) ���)

cur.execute(��� CREATE TABLE IF NOT EXISTS Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id)) ���)

We indicate that thename column in thePeople table must beUNIQUE. We also
indicate that the combination of the two numbers in each row of theFollows table
must be unique. These constraints keep us from making mistakes such as adding
the same relationship more than once.

We can take advantage of these constraints in the following code:

cur.execute(��� INSERT OR IGNORE INTO People (name, retrieved)
VALUES (?, 0) ��� , (friend,))

We add theOR IGNOREclause to ourINSERT statement to indicate that if this par-
ticular INSERT would cause a violation of the “name must be unique” rule, the
database system is allowed to ignore theINSERT. We are using the database con-
straint as a safety net to make sure we don't inadvertently do something incorrect.

Similarly, the following code ensures that we don't add the exact sameFollows
relationship twice.

cur.execute(��� INSERT OR IGNORE INTO Follows
(from_id, to_id) VALUES (?, ?) ��� , (id, friend_id))

Again, we simply tell the database to ignore our attemptedINSERT if it would
violate the uniqueness constraint that we speci�ed for theFollows rows.

14.8.2 Retrieve and/or insert a record

When we prompt the user for a Twitter account, if the account exists, we must
look up itsid value. If the account does not yet exist in thePeople table, we must
insert the record and get theid value from the inserted row.

This is a very common pattern and is done twice in the program above. This code
shows how we look up theid for a friend's account when we have extracted a
screen_name from auser node in the retrieved Twitter JSON.

Since over time it will be increasingly likely that the account will already be in
the database, we �rst check to see if thePeople record exists using aSELECT
statement.

If all goes well2 inside thetry section, we retrieve the record usingfetchone()
and then retrieve the �rst (and only) element of the returned tuple and store it in
friend_id .

If the SELECTfails, thefetchone()[0] code will fail and control will transfer
into theexcept section.

2In general, when a sentence starts with “if all goes well” you will �nd that thecode needs to
use try/except.

14.8. Programming with multiple tables 185

friend = u[� screen_name �]
cur.execute(� SELECT id FROM People WHERE name = ? LIMIT 1� ,

(friend,))
try:

friend_id = cur.fetchone()[0]
countold = countold + 1

except:
cur.execute(��� INSERT OR IGNORE INTO People (name, retrieved)

VALUES (?, 0) ��� , (friend,))
conn.commit()
if cur.rowcount != 1 :

print � Error inserting account: � ,friend
continue

friend_id = cur.lastrowid
countnew = countnew + 1

If we end up in theexcept code, it simply means that the row was not found, so
we must insert the row. We useINSERT OR IGNOREjust to avoid errors and then
call commit() to force the database to really be updated. After the write is done,
we can check thecur.rowcount to see how many rows were affected. Since we
are attempting to insert a single row, if the number of affected rows is something
other than 1, it is an error.

If the INSERT is successful, we can look atcur.lastrowid to �nd out what value
the database assigned to theid column in our newly created row.

14.8.3 Storing the friend relationship

Once we know the key value for both the Twitter user and the friend in the JSON,
it is a simple matter to insert the two numbers into theFollows table with the
following code:

cur.execute(� INSERT OR IGNORE INTO Follows (from_id, to_id) VALUES (?, ?) � ,
(id, friend_id))

Notice that we let the database take care of keeping us from “double-inserting” a
relationship by creating the table with a uniqueness constraint and then adding OR
IGNOREto ourINSERT statement.

Here is a sample execution of this program:

Enter a Twitter account, or quit:
No unretrieved Twitter accounts found
Enter a Twitter account, or quit: drchuck
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 20 revisited= 0
Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 17 revisited= 3
Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 17 revisited= 3
Enter a Twitter account, or quit: quit

186 Chapter 14. Using databases and Structured Query Language(SQL)

We started with thedrchuck account and then let the program automatically pick
the next two accounts to retrieve and add to our database.

The following is the �rst few rows in thePeople andFollows tables after this run
is completed:

People:
(1, u � drchuck � , 1)
(2, u � opencontent � , 1)
(3, u � lhawthorn � , 1)
(4, u � steve_coppin � , 0)
(5, u � davidkocher � , 0)
55 rows.
Follows:
(1, 2)
(1, 3)
(1, 4)
(1, 5)
(1, 6)
60 rows.

You can see theid , name, andvisited �elds in the People table and you see
the numbers of both ends of the relationship in theFollows table. In thePeople
table, we can see that the �rst three people have been visited and their datahas
been retrieved. The data in theFollows table indicates thatdrchuck (user 1) is a
friend to all of the people shown in the �rst �ve rows. This makes sense because
the �rst data we retrieved and stored was the Twitter friends ofdrchuck . If you
were to print more rows from theFollows table, you would see the friends of
users 2 and 3 as well.

14.9 Three kinds of keys

Now that we have started building a data model putting our data into multiple
linked tables and linking the rows in those tables usingkeys, we need to look at
some terminology around keys. There are generally three kinds of keys used in a
database model.

• A logical key is a key that the “real world” might use to look up a row. In
our example data model, thename �eld is a logical key. It is the screen name
for the user and we indeed look up a user's row several times in the program
using thename �eld. You will often �nd that it makes sense to add aUNIQUE
constraint to a logical key. Since the logical key is how we look up a row
from the outside world, it makes little sense to allow multiple rows with the
same value in the table.

• A primary key is usually a number that is assigned automatically by the
database. It generally has no meaning outside the program and is only used
to link rows from different tables together. When we want to look up a row

14.10. Using JOIN to retrieve data 187

in a table, usually searching for the row using the primary key is the fastest
way to �nd the row. Since primary keys are integer numbers, they take up
very little storage and can be compared or sorted very quickly. In our data
model, theid �eld is an example of a primary key.

• A foreign key is usually a number that points to the primary key of an
associated row in a different table. An example of a foreign key in our data
model is thefrom_id .

We are using a naming convention of always calling the primary key �eld name
id and appending the suf�x_id to any �eld name that is a foreign key.

14.10 Using JOIN to retrieve data

Now that we have followed the rules of database normalization and have data
separated into two tables, linked together using primary and foreign keys, we need
to be able to build aSELECTthat reassembles the data across the tables.

SQL uses theJOIN clause to reconnect these tables. In theJOIN clause you specify
the �elds that are used to reconnect the rows between the tables.

The following is an example of aSELECTwith a JOIN clause:

SELECT * FROM Follows JOIN People
ON Follows.from_id = People.id WHERE People.id = 1

TheJOIN clause indicates that the �elds we are selecting cross both theFollows
andPeople tables. TheONclause indicates how the two tables are to be joined:
Take the rows fromFollows and append the row fromPeople where the �eld
from_id in Follows is the same theid value in thePeople table.

�� ����

����

	
����
�����������

��

�

��
����	
�������

�
����	

�

� �

����	�	

�

�

�
�

�������
�
������������

�
�

�

� �

���
���

����

	
���� �����������

�	

� �
�
�

�������
�
������������

	
���� �
	
���� �

����	 �����
����	

�
�
�

The result of the JOIN is to create extra-long “metarows” which have both the
�elds from People and the matching �elds fromFollows . Where there is more

188 Chapter 14. Using databases and Structured Query Language(SQL)

than one match between theid �eld from People and thefrom_id from People ,
then JOIN creates a metarow foreachof the matching pairs of rows, duplicating
data as needed.

The following code demonstrates the data that we will have in the database after
the multi-table Twitter spider program (above) has been run several times.

import sqlite3

conn = sqlite3.connect(� spider.sqlite3 �)
cur = conn.cursor()

cur.execute(� SELECT * FROM People�)
count = 0
print � People: �
for row in cur :

if count < 5: print row
count = count + 1

print count, � rows. �

cur.execute(� SELECT * FROM Follows �)
count = 0
print � Follows: �
for row in cur :

if count < 5: print row
count = count + 1

print count, � rows. �

cur.execute(��� SELECT * FROM Follows JOIN People
ON Follows.to_id = People.id WHERE Follows.from_id = 2 ���)

count = 0
print � Connections for id=2: �
for row in cur :

if count < 5: print row
count = count + 1

print count, � rows. �

cur.close()

In this program, we �rst dump out thePeople andFollows and then dump out a
subset of the data in the tables joined together.

Here is the output of the program:

python twjoin.py
People:
(1, u � drchuck � , 1)
(2, u � opencontent � , 1)
(3, u � lhawthorn � , 1)
(4, u � steve_coppin � , 0)
(5, u � davidkocher � , 0)
55 rows.
Follows:
(1, 2)
(1, 3)

14.11. Summary 189

(1, 4)
(1, 5)
(1, 6)
60 rows.
Connections for id=2:
(2, 1, 1, u � drchuck � , 1)
(2, 28, 28, u � cnxorg � , 0)
(2, 30, 30, u � kthanos � , 0)
(2, 102, 102, u � SomethingGirl � , 0)
(2, 103, 103, u � ja_Pac � , 0)
20 rows.

You see the columns from thePeople andFollows tables and the last set of rows
is the result of theSELECTwith theJOIN clause.

In the last select, we are looking for accounts that are friends of “opencontent”
(i.e.,People.id=2).

In each of the “metarows” in the last select, the �rst two columns are from the
Follows table followed by columns three through �ve from thePeople table. You
can also see that the second column (Follows.to_id) matches the third column
(People.id) in each of the joined-up “metarows”.

14.11 Summary

This chapter has covered a lot of ground to give you an overview of thebasics
of using a database in Python. It is more complicated to write the code to use a
database to store data than Python dictionaries or �at �les so there is little reason
to use a database unless your application truly needs the capabilities of a database.
The situations where a database can be quite useful are: (1) when yourapplication
needs to make small many random updates within a large data set, (2) when your
data is so large it cannot �t in a dictionary and you need to look up information
repeatedly, or (3) when you have a long-running process that you want to be able
to stop and restart and retain the data from one run to the next.

You can build a simple database with a single table to suit many application needs,
but most problems will require several tables and links/relationships between rows
in different tables. When you start making links between tables, it is importantto
do some thoughtful design and follow the rules of database normalization to make
the best use of the database's capabilities. Since the primary motivation for using
a database is that you have a large amount of data to deal with, it is important to
model your data ef�ciently so your programs run as fast as possible.

14.12 Debugging

One common pattern when you are developing a Python program to connectto an
SQLite database will be to run a Python program and check the results usingthe

190 Chapter 14. Using databases and Structured Query Language(SQL)

SQLite Database Browser. The browser allows you to quickly check to seeif your
program is working properly.

You must be careful because SQLite takes care to keep two programs from chang-
ing the same data at the same time. For example, if you open a database in the
browser and make a change to the database and have not yet pressed the “save”
button in the browser, the browser “locks” the database �le and keeps any other
program from accessing the �le. In particular, your Python program will not be
able to access the �le if it is locked.

So a solution is to make sure to either close the database browser or use the
File menu to close the database in the browser before you attempt to access the
database from Python to avoid the problem of your Python code failing because
the database is locked.

14.13 Glossary

attribute: One of the values within a tuple. More commonly called a “column”
or “�eld”.

constraint: When we tell the database to enforce a rule on a �eld or a row in a
table. A common constraint is to insist that there can be no duplicate values
in a particular �eld (i.e., all the values must be unique).

cursor: A cursor allows you to execute SQL commands in a database and retrieve
data from the database. A cursor is similar to a socket or �le handle for
network connections and �les, respectively.

database browser: A piece of software that allows you to directly connect to a
database and manipulate the database directly without writing a program.

foreign key: A numeric key that points to the primary key of a row in another
table. Foreign keys establish relationships between rows stored in different
tables.

index: Additional data that the database software maintains as rows and inserts
into a table to make lookups very fast.

logical key: A key that the “outside world” uses to look up a particular row. For
example in a table of user accounts, a person's email address might be a
good candidate as the logical key for the user's data.

normalization: Designing a data model so that no data is replicated. We store
each item of data at one place in the database and reference it elsewhere
using a foreign key.

primary key: A numeric key assigned to each row that is used to refer to one row
in a table from another table. Often the database is con�gured to automati-
cally assign primary keys as rows are inserted.

14.13. Glossary 191

relation: An area within a database that contains tuples and attributes. More
typically called a “table”.

tuple: A single entry in a database table that is a set of attributes. More typically
called “row”.

192 Chapter 14. Using databases and Structured Query Language(SQL)

Chapter 15

Visualizing data

So far we have been learning the Python language and then learning how touse
Python, the network, and databases to manipulate data.

In this chapter, we take a look at three complete applications that bring all of these
things together to manage and visualize data. You might use these applications as
sample code to help get you started in solving a real-world problem.

Each of the applications is a ZIP �le that you can download and extract ontoyour
computer and execute.

15.1 Building a Google map from geocoded data

In this project, we are using the Google geocoding API to clean up some user-
entered geographic locations of university names and then placing the dataon a
Google map.

To get started, download the application from:

www.py4inf.com/code/geodata.zip

194 Chapter 15. Visualizing data

The �rst problem to solve is that the free Google geocoding API is rate-limitedto
a certain number of requests per day. If you have a lot of data, you mightneed to
stop and restart the lookup process several times. So we break the problem into
two phases.

In the �rst phase we take our input “survey” data in the �lewhere.dataand read
it one line at a time, and retrieve the geocoded information from Google and store
it in a databasegeodata.sqlite. Before we use the geocoding API for each user-
entered location, we simply check to see if we already have the data for that partic-
ular line of input. The database is functioning as a local “cache” of our geocoding
data to make sure we never ask Google for the same data twice.

You can restart the process at any time by removing the �legeodata.sqlite.

Run the geoload.py program. This program will read the input lines in
where.dataand for each line check to see if it is already in the database. If we
don't have the data for the location, it will call the geocoding API to retrievethe
data and store it in the database.

Here is a sample run after there is already some data in the database:

Found in database Northeastern University
Found in database University of Hong Kong, ...
Found in database Technion
Found in database Viswakarma Institute, Pune, India
Found in database UMD
Found in database Tufts University

Resolving Monash University
Retrieving http://maps.googleapis.com/maps/api/

geocode/json?sensor=false&address=Monash+University
Retrieved 2063 characters { "results" : [
{u � status � : u � OK� , u � results � : ... }

Resolving Kokshetau Institute of Economics and Management
Retrieving http://maps.googleapis.com/maps/api/

geocode/json?sensor=false&address=Kokshetau+Inst ...
Retrieved 1749 characters { "results" : [
{u � status � : u � OK� , u � results � : ... }
...

The �rst �ve locations are already in the database and so they are skipped. The
program scans to the point where it �nds new locations and starts retrieving them.

The geoload.pyprogram can be stopped at any time, and there is a counter that
you can use to limit the number of calls to the geocoding API for each run. Given
that thewhere.dataonly has a few hundred data items, you should not run into
the daily rate limit, but if you had more data it might take several runs over several
days to get your database to have all of the geocoded data for your input.

Once you have some data loaded intogeodata.sqlite, you can visualize the data
using thegeodump.pyprogram. This program reads the database and writes the

15.2. Visualizing networks and interconnections 195

�le where.js with the location, latitude, and longitude in the form of executable
JavaScript code.

A run of thegeodump.pyprogram is as follows:

Northeastern University, ... Boston, MA 02115, USA 42.3396 998 -71.08975
Bradley University, 1501 ... Peoria, IL 61625, USA 40.69638 57 -89.6160811
...
Technion, Viazman 87, Kesalsaba, 32000, Israel 32.7775 35. 0216667
Monash University Clayton ... VIC 3800, Australia -37.9152 113 145.134682
Kokshetau, Kazakhstan 53.2833333 69.3833333
...
12 records written to where.js
Open where.html to view the data in a browser

The �le where.html consists of HTML and JavaScript to visualize a Google map.
It reads the most recent data inwhere.js to get the data to be visualized. Here is
the format of thewhere.js �le:

myData = [
[42.3396998,-71.08975, � Northeastern Uni ... Boston, MA 02115 �],
[40.6963857,-89.6160811, � Bradley University, ... Peoria, IL 61625, USA �],
[32.7775,35.0216667, � Technion, Viazman 87, Kesalsaba, 32000, Israel �],

...
];

This is a JavaScript variable that contains a list of lists. The syntax for JavaScript
list constants is very similar to Python, so the syntax should be familiar to you.

Simply openwhere.html in a browser to see the locations. You can hover over
each map pin to �nd the location that the geocoding API returned for the user-
entered input. If you cannot see any data when you open thewhere.html �le, you
might want to check the JavaScript or developer console for your browser.

15.2 Visualizing networks and interconnections

In this application, we will perform some of the functions of a search engine.
We will �rst spider a small subset of the web and run a simpli�ed version of the
Google page rank algorithm to determine which pages are most highly connected,
and then visualize the page rank and connectivity of our small corner of the web.
We will use the D3 JavaScript visualization libraryhttp://d3js.org/ to produce
the visualization output.

You can download and extract this application from:

www.py4inf.com/code/pagerank.zip

196 Chapter 15. Visualizing data

The �rst program (spider.py) program crawls a web site and pulls a series of
pages into the database (spider.sqlite), recording the links between pages. You
can restart the process at any time by removing thespider.sqlite�le and rerunning
spider.py.

Enter web url or enter: http://www.dr-chuck.com/
[� http://www.dr-chuck.com �]
How many pages:2
1 http://www.dr-chuck.com/ 12
2 http://www.dr-chuck.com/csev-blog/ 57
How many pages:

In this sample run, we told it to crawl a website and retrieve two pages. If you
restart the program and tell it to crawl more pages, it will not re-crawl any pages
already in the database. Upon restart it goes to a random non-crawled page and
starts there. So each successive run ofspider.py is additive.

Enter web url or enter: http://www.dr-chuck.com/
[� http://www.dr-chuck.com �]
How many pages:3
3 http://www.dr-chuck.com/csev-blog 57
4 http://www.dr-chuck.com/dr-chuck/resume/speaking.h tm 1
5 http://www.dr-chuck.com/dr-chuck/resume/index.htm 1 3
How many pages:

You can have multiple starting points in the same database—within the program,
these are called “webs”. The spider chooses randomly amongst all non-visited
links across all the webs as the next page to spider.

If you want to dump the contents of thespider.sqlite�le, you can runspdump.py
as follows:

(5, None, 1.0, 3, u � http://www.dr-chuck.com/csev-blog �)
(3, None, 1.0, 4, u � http://www.dr-chuck.com/dr-chuck/resume/speaking.ht m�)
(1, None, 1.0, 2, u � http://www.dr-chuck.com/csev-blog/ �)
(1, None, 1.0, 5, u � http://www.dr-chuck.com/dr-chuck/resume/index.htm �)
4 rows.

15.2. Visualizing networks and interconnections 197

This shows the number of incoming links, the old page rank, the new page rank,
the id of the page, and the url of the page. Thespdump.py program only shows
pages that have at least one incoming link to them.

Once you have a few pages in the database, you can run page rank on the pages
using thesprank.py program. You simply tell it how many page rank iterations to
run.

How many iterations:2
1 0.546848992536
2 0.226714939664
[(1, 0.559), (2, 0.659), (3, 0.985), (4, 2.135), (5, 0.659)]

You can dump the database again to see that page rank has been updated:

(5, 1.0, 0.985, 3, u � http://www.dr-chuck.com/csev-blog �)
(3, 1.0, 2.135, 4, u � http://www.dr-chuck.com/dr-chuck/resume/speaking.ht m�)
(1, 1.0, 0.659, 2, u � http://www.dr-chuck.com/csev-blog/ �)
(1, 1.0, 0.659, 5, u � http://www.dr-chuck.com/dr-chuck/resume/index.htm �)
4 rows.

You can runsprank.py as many times as you like and it will simply re�ne the
page rank each time you run it. You can even runsprank.py a few times and then
go spider a few more pages sithspider.py and then runsprank.py to reconverge
the page rank values. A search engine usually runs both the crawling andranking
programs all the time.

If you want to restart the page rank calculations without respidering the web pages,
you can usespreset.pyand then restartsprank.py.

How many iterations:50
1 0.546848992536
2 0.226714939664
3 0.0659516187242
4 0.0244199333
5 0.0102096489546
6 0.00610244329379
...
42 0.000109076928206
43 9.91987599002e-05
44 9.02151706798e-05
45 8.20451504471e-05
46 7.46150183837e-05
47 6.7857770908e-05
48 6.17124694224e-05
49 5.61236959327e-05
50 5.10410499467e-05
[(512, 0.0296), (1, 12.79), (2, 28.93), (3, 6.808), (4, 13.4 6)]

For each iteration of the page rank algorithm it prints the average change inpage
rank per page. The network initially is quite unbalanced and so the individual
page rank values change wildly between iterations. But in a few short iterations,
the page rank converges. You should runsprank.py long enough that the page
rank values converge.

198 Chapter 15. Visualizing data

If you want to visualize the current top pages in terms of page rank, runspjson.py
to read the database and write the data for the most highly linked pages in JSON
format to be viewed in a web browser.

Creating JSON output on spider.json...
How many nodes? 30
Open force.html in a browser to view the visualization

You can view this data by opening the �leforce.html in your web browser. This
shows an automatic layout of the nodes and links. You can click and drag any
node and you can also double-click on a node to �nd the URL that is represented
by the node.

If you rerun the other utilities, rerunspjson.pyand press refresh in the browser to
get the new data fromspider.json.

15.3 Visualizing mail data

Up to this point in the book, you have become quite familiar with ourmbox-
short.txt andmbox.txt data �les. Now it is time to take our analysis of email data
to the next level.

In the real world, sometimes you have to pull down mail data from servers. That
might take quite some time and the data might be inconsistent, error-�lled, and
need a lot of cleanup or adjustment. In this section, we work with an applica-
tion that is the most complex so far and pull down nearly a gigabyte of data and
visualize it.

You can download this application from:

www.py4inf.com/code/gmane.zip

We will be using data from a free email list archiving service calledwww.gmane.
org . This service is very popular with open source projects because it provides a

15.3. Visualizing mail data 199

nice searchable archive of their email activity. They also have a very liberal policy
regarding accessing their data through their API. They have no rate limits, but ask
that you don't overload their service and take only the data you need. You can
read gmane's terms and conditions at this page:

http://gmane.org/export.php

It is very important that you make use of the gmane.org data responsiblyby adding
delays to your access of their services and spreading long-running jobs over a
longer period of time. Do not abuse this free service and ruin it for the restof us.

When the Sakai email data was spidered using this software, it produced nearly
a Gigabyte of data and took a number of runs on several days. The �le
README.txt in the above ZIP may have instructions as to how you can down-
load a pre-spidered copy of thecontent.sqlite�le for a majority of the Sakai email
corpus so you don't have to spider for �ve days just to run the programs. If you
download the pre-spidered content, you should still run the spidering process to
catch up with more recent messages.

The �rst step is to spider the gmane repository. The base URL is hard-coded in the
gmane.pyand is hard-coded to the Sakai developer list. You can spider another
repository by changing that base url. Make sure to delete thecontent.sqlite�le if
you switch the base url.

Thegmane.py�le operates as a responsible caching spider in that it runs slowly
and retrieves one mail message per second so as to avoid getting throttled by
gmane. It stores all of its data in a database and can be interrupted and restarted
as often as needed. It may take many hours to pull all the data down. So youmay
need to restart several times.

Here is a run ofgmane.pyretrieving the last �ve messages of the Sakai developer
list:

How many messages:10
http://download.gmane.org/gmane.comp.cms.sakai.deve l/51410/51411 9460

nealcaidin@sakaifoundation.org 2013-04-05 re: [buildin g ...
http://download.gmane.org/gmane.comp.cms.sakai.deve l/51411/51412 3379

samuelgutierrezjimenez@gmail.com 2013-04-06 re: [build ing ...
http://download.gmane.org/gmane.comp.cms.sakai.deve l/51412/51413 9903

da1@vt.edu 2013-04-05 [building sakai] melete 2.9 oracle . ..
http://download.gmane.org/gmane.comp.cms.sakai.deve l/51413/51414 349265

m.shedid@elraed-it.com 2013-04-07 [building sakai] ...
http://download.gmane.org/gmane.comp.cms.sakai.deve l/51414/51415 3481

samuelgutierrezjimenez@gmail.com 2013-04-07 re: ...
http://download.gmane.org/gmane.comp.cms.sakai.deve l/51415/51416 0

Does not start with From

The program scanscontent.sqlite from one up to the �rst message number not
already spidered and starts spidering at that message. It continues spidering until

200 Chapter 15. Visualizing data

it has spidered the desired number of messages or it reaches a page thatdoes not
appear to be a properly formatted message.

Sometimesgmane.org is missing a message. Perhaps administrators can delete
messages or perhaps they get lost. If your spider stops, and it seems it has hit
a missing message, go into the SQLite Manager and add a row with the missing
id leaving all the other �elds blank and restartgmane.py. This will unstick the
spidering process and allow it to continue. These empty messages will be ignored
in the next phase of the process.

One nice thing is that once you have spidered all of the messages and havethem
in content.sqlite, you can rungmane.pyagain to get new messages as they are
sent to the list.

Thecontent.sqlitedata is pretty raw, with an inef�cient data model, and not com-
pressed. This is intentional as it allows you to look atcontent.sqlitein the SQLite
Manager to debug problems with the spidering process. It would be a bad idea to
run any queries against this database, as they would be quite slow.

The second process is to run the programgmodel.py. This program reads the raw
data fromcontent.sqliteand produces a cleaned-up and well-modeled version of
the data in the �leindex.sqlite. This �le will be much smaller (often 10X smaller)
thancontent.sqlitebecause it also compresses the header and body text.

Each timegmodel.py runs it deletes and rebuildsindex.sqlite, allowing you to
adjust its parameters and edit the mapping tables incontent.sqlite to tweak the
data cleaning process. This is a sample run ofgmodel.py. It prints a line out each
time 250 mail messages are processed so you can see some progress happening,
as this program may run for a while processing nearly a Gigabyte of mail data.

Loaded allsenders 1588 and mapping 28 dns mapping 1
1 2005-12-08T23:34:30-06:00 ggolden22@mac.com
251 2005-12-22T10:03:20-08:00 tpamsler@ucdavis.edu
501 2006-01-12T11:17:34-05:00 lance@indiana.edu
751 2006-01-24T11:13:28-08:00 vrajgopalan@ucmerced.ed u
...

Thegmodel.pyprogram handles a number of data cleaning tasks.

Domain names are truncated to two levels for .com, .org, .edu, and .net. Other
domain names are truncated to three levels. So si.umich.edu becomes umich.edu
and caret.cam.ac.uk becomes cam.ac.uk. Email addresses are also forced tolower
case, and some of the @gmane.org address like the following

arwhyte-63aXycvo3TyHXe+LvDLADg@public.gmane.org

are converted to the real address whenever there is a matching real emailaddress
elsewhere in the message corpus.

In the content.sqlite database there are two tables that allow you to map both
domain names and individual email addresses that change over the lifetime ofthe

15.3. Visualizing mail data 201

email list. For example, Steve Githens used the following email addresses as he
changed jobs over the life of the Sakai developer list:

s-githens@northwestern.edu
sgithens@cam.ac.uk
swgithen@mtu.edu

We can add two entries to the Mapping table incontent.sqlitesogmodel.pywill
map all three to one address:

s-githens@northwestern.edu -> swgithen@mtu.edu
sgithens@cam.ac.uk -> swgithen@mtu.edu

You can also make similar entries in the DNSMapping table if there are multiple
DNS names you want mapped to a single DNS. The following mapping was added
to the Sakai data:

iupui.edu -> indiana.edu

so all the accounts from the various Indiana University campuses are tracked to-
gether.

You can rerun thegmodel.pyover and over as you look at the data, and add map-
pings to make the data cleaner and cleaner. When you are done, you will have a
nicely indexed version of the email inindex.sqlite. This is the �le to use to do
data analysis. With this �le, data analysis will be really quick.

The �rst, simplest data analysis is to determine ”who sent the most mail?” and
”which organization sent the most mail”? This is done usinggbasic.py:

How many to dump? 5
Loaded messages= 51330 subjects= 25033 senders= 1584

Top 5 Email list participants
steve.swinsburg@gmail.com 2657
azeckoski@unicon.net 1742
ieb@tfd.co.uk 1591
csev@umich.edu 1304
david.horwitz@uct.ac.za 1184

Top 5 Email list organizations
gmail.com 7339
umich.edu 6243
uct.ac.za 2451
indiana.edu 2258
unicon.net 2055

Note how much more quicklygbasic.py runs compared togmane.py or even
gmodel.py. They are all working on the same data, butgbasic.pyis using the
compressed and normalized data inindex.sqlite. If you have a lot of data to man-
age, a multistep process like the one in this application may take a little longer
to develop, but will save you a lot of time when you really start to explore and
visualize your data.

202 Chapter 15. Visualizing data

You can produce a simple visualization of the word frequency in the subjectlines
in the �le gword.py:

Range of counts: 33229 129
Output written to gword.js

This produces the �legword.js which you can visualize usinggword.htm to pro-
duce a word cloud similar to the one at the beginning of this section.

A second visualization is produced bygline.py. It computes email participation
by organizations over time.

Loaded messages= 51330 subjects= 25033 senders= 1584
Top 10 Oranizations
[� gmail.com � , � umich.edu � , � uct.ac.za � , � indiana.edu � ,
� unicon.net � , � tfd.co.uk � , � berkeley.edu � , � longsight.com � ,
� stanford.edu � , � ox.ac.uk �]
Output written to gline.js

Its output is written togline.js which is visualized usinggline.htm.

This is a relatively complex and sophisticated application and has features to do
some real data retrieval, cleaning, and visualization.

Chapter 16

Automating common tasks on
your computer

We have been reading data from �les, networks, services, and databases. Python
can also go through all of the directories and folders on your computers and read
those �les as well.

In this chapter, we will write programs that scan through your computer andper-
form some operation on each �le. Files are organized into directories (alsocalled
“folders”). Simple Python scripts can make short work of simple tasks that must
be done to hundreds or thousands of �les spread across a directory tree or your
entire computer.

To walk through all the directories and �les in a tree we useos.walk and afor
loop. This is similar to howopen allows us to write a loop to read the contents of a
�le, socket allows us to write a loop to read the contents of a network connection,
andurllib allows us to open a web document and loop through its contents.

16.1 File names and paths

Every running program has a “current directory,” which is the default directory for
most operations. For example, when you open a �le for reading, Python looks for
it in the current directory.

Theos module provides functions for working with �les and directories (os stands
for “operating system”).os.getcwd returns the name of the current directory:

>>> import os
>>> cwd = os.getcwd()
>>> print cwd
/Users/csev

204 Chapter 16. Automating common tasks on your computer

cwd stands forcurrent working directory . The result in this example is
/Users/csev , which is the home directory of a user namedcsev .

A string like cwd that identi�es a �le is called a path. Arelative path starts from
the current directory; anabsolute pathstarts from the topmost directory in the �le
system.

The paths we have seen so far are simple �le names, so they are relative to the cur-
rent directory. To �nd the absolute path to a �le, you can useos.path.abspath :

>>> os.path.abspath(� memo.txt �)
� /Users/csev/memo.txt �

os.path.exists checks whether a �le or directory exists:

>>> os.path.exists(� memo.txt �)
True

If it exists,os.path.isdir checks whether it's a directory:

>>> os.path.isdir(� memo.txt �)
False
>>> os.path.isdir(� music �)
True

Similarly, os.path.isfile checks whether it's a �le.

os.listdir returns a list of the �les (and other directories) in the given directory:

>>> os.listdir(cwd)
[� music � , � photos � , � memo.txt �]

16.2 Example: Cleaning up a photo directory

Some time ago, I built a bit of Flickr-like software that received photos frommy
cell phone and stored those photos on my server. I wrote this before Flickr existed
and kept using it after Flickr existed because I wanted to keep original copies of
my images forever.

I would also send a simple one-line text description in the MMS message or the
subject line of the email message. I stored these messages in a text �le in the
same directory as the image �le. I came up with a directory structure based on
the month, year, day, and time the photo was taken. The following would be an
example of the naming for one photo and its existing description:

./2006/03/24-03-06_2018002.jpg

./2006/03/24-03-06_2018002.txt

After seven years, I had a lot of photos and captions. Over the years as I switched
cell phones, sometimes my code to extract the caption from the message would
break and add a bunch of useless data on my server instead of a caption.

16.2. Example: Cleaning up a photo directory 205

I wanted to go through these �les and �gure out which of the text �les werereally
captions and which were junk and then delete the bad �les. The �rst thing to do
was to get a simple inventory of how many text �les I had in one the subfolders
using the following program:

import os
count = 0
for (dirname, dirs, files) in os.walk(� . �):

for filename in files:
if filename.endswith(� .txt �) :

count = count + 1
print � Files: � , count

python txtcount.py
Files: 1917

The key bit of code that makes this possible is theos.walk library in Python.
When we callos.walk and give it a starting directory, it will “walk” through all
of the directories and subdirectories recursively. The string “.” indicates to start
in the current directory and walk downward. As it encounters each directory, we
get three values in a tuple in the body of thefor loop. The �rst value is the
current directory name, the second value is the list of subdirectories in thecurrent
directory, and the third value is a list of �les in the current directory.

We do not have to explicitly look into each of the subdirectories because we can
count onos.walk to visit every folder eventually. But we do want to look at
each �le, so we write a simplefor loop to examine each of the �les in the current
directory. We check each �le to see if it ends with “.txt” and then count the number
of �les through the whole directory tree that end with the suf�x “.txt”.

Once we have a sense of how many �les end with “.txt”, the next thing to do is try
to automatically determine in Python which �les are bad and which �les are good.
So we write a simple program to print out the �les and the size of each �le:

import os
from os.path import join
for (dirname, dirs, files) in os.walk(� . �):

for filename in files:
if filename.endswith(� .txt �) :

thefile = os.path.join(dirname,filename)
print os.path.getsize(thefile), thefile

Now instead of just counting the �les, we create a �le name by concatenating the
directory name with the name of the �le within the directory usingos.path.join .
It is important to useos.path.join instead of string concatenation because on
Windows we use a backslash (\) to construct �le paths and on Linux or Apple
we use a forward slash (/) to construct �le paths. Theos.path.join knows
these differences and knows what system we are running on and it does the proper
concatenation depending on the system. So the same Python code runs on either
Windows or Unix-style systems.

206 Chapter 16. Automating common tasks on your computer

Once we have the full �le name with directory path, we use theos.path.getsize
utility to get the size and print it out, producing the following output:

python txtsize.py
...
18 ./2006/03/24-03-06_2303002.txt
22 ./2006/03/25-03-06_1340001.txt
22 ./2006/03/25-03-06_2034001.txt
...
2565 ./2005/09/28-09-05_1043004.txt
2565 ./2005/09/28-09-05_1141002.txt
...
2578 ./2006/03/27-03-06_1618001.txt
2578 ./2006/03/28-03-06_2109001.txt
2578 ./2006/03/29-03-06_1355001.txt
...

Scanning the output, we notice that some �les are pretty short and a lot of the
�les are pretty large and the same size (2578 and 2565). When we take a look at
a few of these larger �les by hand, it looks like the large �les are nothing but a
generic bit of identical HTML that came in from mail sent to my system from my
T-Mobile phone:

<html>
<head>

<title>T-Mobile</title>
...

Skimming through the �le, it looks like there is no good information in these �les
so we can probably delete them.

But before we delete the �les, we will write a program to look for �les that are
more than one line long and show the contents of the �le. We will not bother
showing ourselves those �les that are exactly 2578 or 2565 characterslong since
we know that these �les have no useful information.

So we write the following program:

import os
from os.path import join
for (dirname, dirs, files) in os.walk(� . �):

for filename in files:
if filename.endswith(� .txt �) :

thefile = os.path.join(dirname,filename)
size = os.path.getsize(thefile)
if size == 2578 or size == 2565:

continue
fhand = open(thefile, � r �)
lines = list()
for line in fhand:

lines.append(line)
fhand.close()
if len(lines) > 1:

print len(lines), thefile
print lines[:4]

16.2. Example: Cleaning up a photo directory 207

We use acontinue to skip �les with the two “bad sizes”, then open the rest of the
�les and read the lines of the �le into a Python list and if the �le has more than one
line we print out how many lines are in the �le and print out the �rst three lines.

It looks like �ltering out those two bad �le sizes, and assuming that all one-line
�les are correct, we are down to some pretty clean data:

python txtcheck.py
3 ./2004/03/22-03-04_2015.txt
[� Little horse rider\r\n � , � \r\n � , � \r �]
2 ./2004/11/30-11-04_1834001.txt
[� Testing 123.\n � , � \n �]
3 ./2007/09/15-09-07_074202_03.txt
[� \r\n � , � \r\n � , � Sent from my iPhone\r\n �]
3 ./2007/09/19-09-07_124857_01.txt
[� \r\n � , � \r\n � , � Sent from my iPhone\r\n �]
3 ./2007/09/20-09-07_115617_01.txt
...

But there is one more annoying pattern of �les: there are some three-line �les that
consist of two blank lines followed by a line that says “Sent from my iPhone”that
have slipped into my data. So we make the following change to the program to
deal with these �les as well.

lines = list()
for line in fhand:

lines.append(line)
if len(lines) == 3 and lines[2].startswith(� Sent from my iPhone �):

continue
if len(lines) > 1:

print len(lines), thefile
print lines[:4]

We simply check if we have a three-line �le, and if the third line starts with the
speci�ed text, we skip it.

Now when we run the program, we only see four remaining multi-line �les and all
of those �les look pretty reasonable:

python txtcheck2.py
3 ./2004/03/22-03-04_2015.txt
[� Little horse rider\r\n � , � \r\n � , � \r �]
2 ./2004/11/30-11-04_1834001.txt
[� Testing 123.\n � , � \n �]
2 ./2006/03/17-03-06_1806001.txt
[� On the road again...\r\n � , � \r\n �]
2 ./2006/03/24-03-06_1740001.txt
[� On the road again...\r\n � , � \r\n �]

If you look at the overall pattern of this program, we have successivelyre�ned
how we accept or reject �les and once we found a pattern that was “bad” we used
continue to skip the bad �les so we could re�ne our code to �nd more �le patterns
that were bad.

208 Chapter 16. Automating common tasks on your computer

Now we are getting ready to delete the �les, so we are going to �ip the logic and
instead of printing out the remaining good �les, we will print out the “bad” �les
that we are about to delete.

import os
from os.path import join
for (dirname, dirs, files) in os.walk(� . �):

for filename in files:
if filename.endswith(� .txt �) :

thefile = os.path.join(dirname,filename)
size = os.path.getsize(thefile)
if size == 2578 or size == 2565:

print � T-Mobile: � ,thefile
continue

fhand = open(thefile, � r �)
lines = list()
for line in fhand:

lines.append(line)
fhand.close()
if len(lines) == 3 and lines[2].startswith(� Sent from my iPhone �):

print � iPhone: � , thefile
continue

We can now see a list of candidate �les that we are about to delete and why these
�les are up for deleting. The program produces the following output:

python txtcheck3.py
...
T-Mobile: ./2006/05/31-05-06_1540001.txt
T-Mobile: ./2006/05/31-05-06_1648001.txt
iPhone: ./2007/09/15-09-07_074202_03.txt
iPhone: ./2007/09/15-09-07_144641_01.txt
iPhone: ./2007/09/19-09-07_124857_01.txt
...

We can spot-check these �les to make sure that we did not inadvertently endup
introducing a bug in our program or perhaps our logic caught some �les we did
not want to catch.

Once we are satis�ed that this is the list of �les we want to delete, we make the
following change to the program:

if size == 2578 or size == 2565:
print � T-Mobile: � ,thefile
os.remove(thefile)
continue

...
if len(lines) == 3 and lines[2].startswith(� Sent from my iPhone �):

print � iPhone: � , thefile
os.remove(thefile)
continue

In this version of the program, we will both print the �le out and remove the bad
�les using os.remove .

16.3. Command-line arguments 209

python txtdelete.py
T-Mobile: ./2005/01/02-01-05_1356001.txt
T-Mobile: ./2005/01/02-01-05_1858001.txt
...

Just for fun, run the program a second time and it will produce no outputsince the
bad �les are already gone.

If we reruntxtcount.py we can see that we have removed 899 bad �les:

python txtcount.py
Files: 1018

In this section, we have followed a sequence where we use Python to �rstlook
through directories and �les seeking patterns. We slowly use Python to helpde-
termine what we want to do to clean up our directories. Once we �gure out which
�les are good and which �les are not useful, we use Python to delete the �les and
perform the cleanup.

The problem you may need to solve can either be quite simple and might only
depend on looking at the names of �les, or perhaps you need to read every single
�le and look for patterns within the �les. Sometimes you will need to read all the
�les and make a change to some of the �les. All of these are pretty straightforward
once you understand howos.walk and the otheros utilities can be used.

16.3 Command-line arguments

In earlier chapters, we had a number of programs that prompted for a �le name us-
ing raw_input and then read data from the �le and processed the data as follows:

name = raw_input(� Enter file: �)
handle = open(name, � r �)
text = handle.read()
...

We can simplify this program a bit by taking the �le name from the command
line when we start Python. Up to now, we simply run our Python programs and
respond to the prompts as follows:

python words.py
Enter file: mbox-short.txt
...

We can place additional strings after the Python �le and access thosecommand-
line arguments in our Python program. Here is a simple program that demon-
strates reading arguments from the command line:

import sys
print � Count: � , len(sys.argv)

210 Chapter 16. Automating common tasks on your computer

print � Type: � , type(sys.argv)
for arg in sys.argv:

print � Argument: � , arg

The contents ofsys.argv are a list of strings where the �rst string is the name of
the Python program and the remaining strings are the arguments on the command
line after the Python �le.

The following shows our program reading several command-line arguments from
the command line:

python argtest.py hello there
Count: 3
Type: <type � list � >
Argument: argtest.py
Argument: hello
Argument: there

There are three arguments are passed into our program as a three-element list.
The �rst element of the list is the �le name (argtest.py) and the others are the two
command-line arguments after the �le name.

We can rewrite our program to read the �le, taking the �le name from the
command-line argument as follows:

import sys

name = sys.argv[1]
handle = open(name, � r �)
text = handle.read()
print name, � is � , len(text), � bytes �

We take the second command-line argument as the name of the �le (skipping past
the program name in the[0] entry). We open the �le and read the contents as
follows:

python argfile.py mbox-short.txt
mbox-short.txt is 94626 bytes

Using command-line arguments as input can make it easier to reuse your Python
programs, especially when you only need to input one or two strings.

16.4 Pipes

Most operating systems provide a command-line interface, also known as ashell.
Shells usually provide commands to navigate the �le system and launch appli-
cations. For example, in Unix, you can change directories withcd , display the
contents of a directory withls , and launch a web browser by typing (for example)
firefox .

16.5. Glossary 211

Any program that you can launch from the shell can also be launched from Python
using apipe. A pipe is an object that represents a running process.

For example, the Unix command1 ls -l normally displays the contents of the
current directory (in long format). You can launchls with os.popen :

>>> cmd = � ls -l �
>>> fp = os.popen(cmd)

The argument is a string that contains a shell command. The return value is a �le
pointer that behaves just like an open �le. You can read the output from the ls
process one line at a time withreadline or get the whole thing at once withread :

>>> res = fp.read()

When you are done, you close the pipe like a �le:

>>> stat = fp.close()
>>> print stat
None

The return value is the �nal status of thels process;None means that it ended
normally (with no errors).

16.5 Glossary

absolute path: A string that describes where a �le or directory is stored that starts
at the “top of the tree of directories” so that it can be used to access the �le
or directory, regardless of the current working directory.

checksum: See alsohashing. The term “checksum” comes from the need to
verify if data was garbled as it was sent across a network or written to a
backup medium and then read back in. When the data is written or sent, the
sending system computes a checksum and also sends the checksum. When
the data is read or received, the receiving system re-computes the checksum
from the received data and compares it to the received checksum. If the
checksums do not match, we must assume that the data was garbled as it
was transferred.

command-line argument: Parameters on the command line after the Python �le
name.

current working directory: The current directory that you are “in”. You can
change your working directory using thecd command on most systems in
their command-line interfaces. When you open a �le in Python using just
the �le name with no path information, the �le must be in the current work-
ing directory where you are running the program.

1When using pipes to talk to operating system commands likels , it is important for you to know
which operating system you are using and only open pipes to commands that are supported on your
operating system.

212 Chapter 16. Automating common tasks on your computer

hashing: Reading through a potentially large amount of data and producing a
unique checksum for the data. The best hash functions produce veryfew
“collisions” where you can give two different streams of data to the hash
function and get back the same hash. MD5, SHA1, and SHA256 are exam-
ples of commonly used hash functions.

pipe: A pipe is a connection to a running program. Using a pipe, you can write a
program to send data to another program or receive data from that program.
A pipe is similar to asocketexcept that a pipe can only be used to connect
programs running on the same computer (i.e., not across a network).

relative path: A string that describes where a �le or directory is stored relative to
the current working directory.

shell: A command-line interface to an operating system. Also called a “termi-
nal program” in some systems. In this interface you type a command and
parameters on a line and press “enter” to execute the command.

walk: A term we use to describe the notion of visiting the entire tree of directo-
ries, sub-directories, sub-sub-directories, until we have visited the allof the
directories. We call this “walking the directory tree”.

16.6 Exercises

Exercise 16.1In a large collection of MP3 �les there may be more than one copy
of the same song, stored in different directories or with different �le names. The
goal of this exercise is to search for these duplicates.

1. Write a program that walks a directory and all of its subdirectories for all
�les with a given suf�x (like .mp3) and lists pairs of �les with that are the
same size. Hint: Use a dictionary where the key of the dictionary is the size
of the �le from os.path.getsize and the value in the dictionary is the path
name concatenated with the �le name. As you encounter each �le, check
to see if you already have a �le that has the same size as the current �le. If
so, you have a duplicate size �le, so print out the �le size and the two �le
names (one from the hash and the other �le you are looking at).

2. Adapt the previous program to look for �les that have duplicate content
using a hashing orchecksumalgorithm. For example, MD5 (Message-
Digest algorithm 5) takes an arbitrarily-long “message” and returns a 128-
bit “checksum”. The probability is very small that two �les with different
contents will return the same checksum.

You can read about MD5 atwikipedia.org/wiki/Md5 . The following
code snippet opens a �le, reads it, and computes its checksum.

16.6. Exercises 213

import hashlib
...

fhand = open(thefile, � r �)
data = fhand.read()
fhand.close()
checksum = hashlib.md5(data).hexdigest()

You should create a dictionary where the checksum is the key and the �le
name is the value. When you compute a checksum and it is already in the
dictionary as a key, you have two �les with duplicate content, so print out
the �le in the dictionary and the �le you just read. Here is some sample
output from a run in a folder of image �les:

./2004/11/15-11-04_0923001.jpg ./2004/11/15-11-04_10 16001.jpg

./2005/06/28-06-05_1500001.jpg ./2005/06/28-06-05_15 02001.jpg

./2006/08/11-08-06_205948_01.jpg ./2006/08/12-08-06_ 155318_02.jpg

Apparently I sometimes sent the same photo more than once or made a copy
of a photo from time to time without deleting the original.

214 Chapter 16. Automating common tasks on your computer

Appendix A

Python Programming on
Windows

In this appendix, we walk through a series of steps so you can run Python on
Windows. There are many different approaches you can take, and thisis just one
approach to keep things simple.

First, you need to install a programmer editor. You do not want to use Notepad
or Microsoft Word to edit Python programs. Programs must be in ”�at-text”�les
and so you need an editor that is good at editing text �les.

Our recommended editor for Windows is NotePad++ which can be downloaded
and installed from:

https://notepad-plus-plus.org/

Then download a recent version of Python 2 from thewww.python.org web site.

https://www.python.org/downloads/

Once you have installed Python, you should have a new folder on your computer
like C: nPython27 .

To create a Python program, run NotePad++ from the Start Menu and save the
�le with a suf�x of “.py”. For this exercise, put a folder on your Desktopnamed
py4inf . It is best to keep your folder names short and not to have any spacesin
your folder or �le name.

Let's make our �rst Python program be:

print � Hello Chuck �

Except that you should change it to be your name. Save the �le into
Desktop npy4inf nprog1.py .

Then open a command-line window. Different versions of Windows do this dif-
ferently:

216 Appendix A. Python Programming on Windows

• Windows Vista and Windows 7: PressStart and then in the command
search window enter the wordcommandand press enter.

• Windows XP: PressStart, thenRun, and then entercmd in the dialog box
and pressOK.

You will �nd yourself in a text window with a prompt that tells you what folder
you are currently “in”.

Windows Vista and Windows-7:C: nUsers ncsev
Windows XP:C: nDocuments and Settings ncsev

This is your “home directory”. Now we need to move into the folder where you
have saved your Python program using the following commands:

C:\Users\csev\> cd Desktop
C:\Users\csev\Desktop> cd py4inf

Then type

C:\Users\csev\Desktop\py4inf> dir

to list your �les. You should see theprog1.py when you type thedir command.

To run your program, simply type the name of your �le at the command prompt
and press enter.

C:\Users\csev\Desktop\py4inf> prog1.py
Hello Chuck
C:\Users\csev\Desktop\py4inf>

You can edit the �le in NotePad++, save it, and then switch back to the command
line and execute the program again by typing the �le name again at the command-
line prompt.

If you get confused in the command-line window, just close it and open a new one.

Hint: You can also press the “up arrow” at the command line to scroll back and
run a previously entered command again.

You should also look in the preferences for NotePad++ and set it to expand tab
characters to be four spaces. This will save you lots of effort looking for indenta-
tion errors.

You can also �nd further information on editing and running Python programs at
www.py4inf.com .

Appendix B

Python Programming on
Macintosh

In this appendix, we walk through a series of steps so you can run Python on
Macintosh. Since Python is already included in the Macintosh Operating system,
we only need to learn how to edit Python �les and run Python programs in the
terminal window.

There are many approaches you can take to editing and running Python programs,
and this is just one approach we have found to be very simple.

First, you need to install a programmer editor. You do not want to use TextEdit
or Microsoft Word to edit Python programs. Programs must be in ”�at-text”�les
and so you need an editor that is good at editing text �les.

Our recommended editor for Macintosh is TextWrangler which can be down-
loaded and installed from:

http://www.barebones.com/products/TextWrangler/

To create a Python program, runTextWrangler from yourApplications folder.

Let's make our �rst Python program be:

print � Hello Chuck �

Except that you should change it to be your name. Save the �le in a folder on your
Desktop namedpy4inf . It is best to keep your folder names short and not to have
any spaces in your folder or �le name. Once you have made the folder, save the
�le into Desktop npy4inf nprog1.py .

Then run theTerminal program. The easiest way is to press the Spotlight icon (the
magnifying glass) in the upper right of your screen, enter “terminal”, andlaunch
the application that comes up.

218 Appendix B. Python Programming on Macintosh

You start in your “home directory”. You can see the current directory by typing
thepwd command in the terminal window.

67-194-80-15:˜ csev$ pwd
/Users/csev
67-194-80-15:˜ csev$

you must be in the folder that contains your Python program to run the program.
Use thecd command to move to a new folder and then thels command to list the
�les in the folder.

67-194-80-15:˜ csev$ cd Desktop
67-194-80-15:Desktop csev$ cd py4inf
67-194-80-15:py4inf csev$ ls
prog1.py
67-194-80-15:py4inf csev$

To run your program, simply type thepython command followed by the name of
your �le at the command prompt and press enter.

67-194-80-15:py4inf csev$ python prog1.py
Hello Chuck
67-194-80-15:py4inf csev$

You can edit the �le in TextWrangler, save it, and then switch back to the command
line and execute the program again by typing the �le name again at the command-
line prompt.

If you get confused in the command-line window, just close it and open a new one.

Hint: You can also press the “up-arrow” in the command line to scroll back and
run a previously entered command again.

You should also look in the preferences for TextWrangler and set it to expand tab
characters to be four spaces. It will save you lots of effort looking for indentation
errors.

You can also �nd further information on editing and running Python programs at
www.py4inf.com .

Appendix C

Contributions

Contributor List for “Python for Informatics”

Bruce Shields for copy editing early drafts, Sarah Hegge, Steven Cherry, Sarah
Kathleen Barbarow, Andrea Parker, Radaphat Chongthammakun, Megan Hixon,
Kirby Urner, Sarah Kathleen Barbrow, Katie Kujala, Noah Botimer, Emily Alin-
der, Mark Thompson-Kular, James Perry, Eric Hofer, Eytan Adar, Peter Robinson,
Deborah J. Nelson, Jonathan C. Anthony, Eden Rassette, Jeannette Schroeder,
Justin Feezell, Chuanqi Li, Gerald Gordinier, Gavin Thomas Strassel, Ryan
Clement, Alissa Talley, Caitlin Holman, Yong-Mi Kim, Karen Stover, Cherie Ed-
monds, Maria Seiferle, Romer Kristi D. Aranas (RK), Grant Boyer, Hedemarrie
Dussan,

Preface for “Think Python”

The strange history of “Think Python”

(Allen B. Downey)

In January 1999 I was preparing to teach an introductory programming class in
Java. I had taught it three times and I was getting frustrated. The failure rate in
the class was too high and, even for students who succeeded, the overall level of
achievement was too low.

One of the problems I saw was the books. They were too big, with too much
unnecessary detail about Java, and not enough high-level guidance about how to
program. And they all suffered from the trap door effect: they would start out easy,
proceed gradually, and then somewhere around Chapter 5 the bottom would fall
out. The students would get too much new material, too fast, and I would spend
the rest of the semester picking up the pieces.

Two weeks before the �rst day of classes, I decided to write my own book. My
goals were:

220 Appendix C. Contributions

• Keep it short. It is better for students to read 10 pages than not read 50
pages.

• Be careful with vocabulary. I tried to minimize the jargon and de�ne each
term at �rst use.

• Build gradually. To avoid trap doors, I took the most dif�cult topics and
split them into a series of small steps.

• Focus on programming, not the programming language. I included the min-
imum useful subset of Java and left out the rest.

I needed a title, so on a whim I choseHow to Think Like a Computer Scientist.

My �rst version was rough, but it worked. Students did the reading, and they
understood enough that I could spend class time on the hard topics, the interesting
topics and (most important) letting the students practice.

I released the book under the GNU Free Documentation License, which allows
users to copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high school teacher in Virginia,
adopted my book and translated it into Python. He sent me a copy of his trans-
lation, and I had the unusual experience of learning Python by reading myown
book.

Jeff and I revised the book, incorporated a case study by Chris Meyers, and in 2001
we releasedHow to Think Like a Computer Scientist: Learning with Python, also
under the GNU Free Documentation License. As Green Tea Press, I published
the book and started selling hard copies through Amazon.com and college book
stores. Other books from Green Tea Press are available atgreenteapress.com .

In 2003 I started teaching at Olin College and I got to teach Python for the �rst
time. The contrast with Java was striking. Students struggled less, learned more,
worked on more interesting projects, and generally had a lot more fun.

Over the last �ve years I have continued to develop the book, correctingerrors,
improving some of the examples and adding material, especially exercises. In
2008 I started work on a major revision—at the same time, I was contacted by an
editor at Cambridge University Press who was interested in publishing the next
edition. Good timing!

I hope you enjoy working with this book, and that it helps you learn to program
and think, at least a little bit, like a computer scientist.

Acknowledgements for “Think Python”

(Allen B. Downey)

221

First and most importantly, I thank Jeff Elkner, who translated my Java bookinto
Python, which got this project started and introduced me to what has turnedout to
be my favorite language.

I also thank Chris Meyers, who contributed several sections toHow to Think Like
a Computer Scientist.

And I thank the Free Software Foundation for developing the GNU Free Docu-
mentation License, which helped make my collaboration with Jeff and Chris pos-
sible.

I also thank the editors at Lulu who worked onHow to Think Like a Computer
Scientist.

I thank all the students who worked with earlier versions of this book and allthe
contributors (listed in an Appendix) who sent in corrections and suggestions.

And I thank my wife, Lisa, for her work on this book, and Green Tea Press, and
everything else, too.

Allen B. Downey
Needham MA

Allen Downey is an Associate Professor of Computer Science at the Franklin W.
Olin College of Engineering.

Contributor List for “Think Python”

(Allen B. Downey)

More than 100 sharp-eyed and thoughtful readers have sent in suggestions and
corrections over the past few years. Their contributions, and enthusiasm for this
project, have been a huge help.

For the detail on the nature of each of the contributions from these individuals, see
the “Think Python” text.

Lloyd Hugh Allen, Yvon Boulianne, Fred Bremmer, Jonah Cohen, Michael
Conlon, Benoit Girard, Courtney Gleason and Katherine Smith, Lee Harr,
James Kaylin, David Kershaw, Eddie Lam, Man-Yong Lee, David Mayo, Chris
McAloon, Matthew J. Moelter, Simon Dicon Montford, John Ouzts, Kevin
Parks, David Pool, Michael Schmitt, Robin Shaw, Paul Sleigh, Craig T. Snydal,
Ian Thomas, Keith Verheyden, Peter Winstanley, Chris Wrobel, Moshe Zadka,
Christoph Zwerschke, James Mayer, Hayden McAfee, Angel Arnal, Tauhidul
Hoque and Lex Berezhny, Dr. Michele Alzetta, Andy Mitchell, Kalin Harvey,
Christopher P. Smith, David Hutchins, Gregor Lingl, Julie Peters, Florin Op-
rina, D. J. Webre, Ken, Ivo Wever, Curtis Yanko, Ben Logan, JasonArmstrong,

222 Appendix C. Contributions

Louis Cordier, Brian Cain, Rob Black, Jean-Philippe Rey at Ecole Centrale Paris,
Jason Mader at George Washington University made a number Jan Gundtofte-
Bruun, Abel David and Alexis Dinno, Charles Thayer, Roger Sperberg, Sam
Bull, Andrew Cheung, C. Corey Capel, Alessandra, Wim Champagne, Douglas
Wright, Jared Spindor, Lin Peiheng, Ray Hagtvedt, Torsten Hübsch, Inga Petuh-
hov, Arne Babenhauserheide, Mark E. Casida, Scott Tyler, GordonShephard,
Andrew Turner, Adam Hobart, Daryl Hammond and Sarah Zimmerman, George
Sass, Brian Bingham, Leah Engelbert-Fenton, Joe Funke, Chao-chaoChen, Jeff
Paine, Lubos Pintes, Gregg Lind and Abigail Heithoff, Max Hailperin, Chotipat
Pornavalai, Stanislaw Antol, Eric Pashman, Miguel Azevedo, Jianhua Liu,Nick
King, Martin Zuther, Adam Zimmerman, Ratnakar Tiwari, Anurag Goel, Kelli
Kratzer, Mark Grif�ths, Roydan Ongie, Patryk Wolowiec, Mark Chonofsky, Rus-
sell Coleman, Wei Huang, Karen Barber, Nam Nguyen, Stéphane Morin, Fer-
nando Tardio, and Paul Stoop.

Appendix D

Copyright Detail

This work is licensed under a Creative Common Attribution-NonCommercial-
ShareAlike 3.0 Unported License. This license is available atcreativecommons.
org/licenses/by-nc-sa/3.0/ .

I would have preferred to license the book under the less restrictive CC-BY-SA
license. But unfortunately there are a few unscrupulous organizationswho search
for and �nd freely licensed books, and then publish and sell virtually unchanged
copies of the books on a print on demand service such as LuLu or CreateSpace.
CreateSpace has (thankfully) added a policy that gives the wishes of theactual
copyright holder preference over a non-copyright holder attempting topublish a
freely licensed work. Unfortunately there are many print-on-demand services and
very few have as well-considered a policy as CreateSpace.

Regretfully, I added the NC element to the license this book to give me recourse
in case someone tries to clone this book and sell it commercially. Unfortunately,
adding NC limits uses of this material that I would like to permit. So I have added
this section of the document to describe speci�c situations where I am givingmy
permission in advance to use the material in this book in situations that some might
consider commercial.

• If you are printing a limited number of copies of all or part of this book
for use in a course (e.g., like a coursepack), then you are granted CC-BY
license to these materials for that purpose.

• If you are a teacher at a university and you translate this book into a lan-
guage other than English and teach using the translated book, then you can
contact me and I will granted you a CC-BY-SA license to these materials
with respect to the publication of your translation. In particular, you will be
permitted to sell the resulting translated book commercially.

If you are intending to translate the book, you may want to contact me so we can
make sure that you have all of the related course materials so you can translate
them as well.

224 Appendix D. Copyright Detail

Of course, you are welcome to contact me and ask for permission if these clauses
are not suf�cient. In all cases, permission to reuse and remix this material will be
granted as long as there is clear added value or bene�t to students or teachers that
will accrue as a result of the new work.

Charles Severance
www.dr-chuck.com
Ann Arbor, MI, USA
September 9, 2013

Index

absolute path, 204
access, 91
accumulator, 64

sum, 62
algorithm, 53

MD5, 212
aliasing, 98, 99, 104

copying to avoid, 102
alternative execution, 33
and operator, 32
API, 166

key, 162
append method, 94, 100
argument, 43, 47, 49, 50, 53, 100

keyword, 119
list, 100
optional, 72, 97

arguments, 209
arithmetic operator, 22
assignment, 28, 91

item, 70, 92, 118
tuple, 119, 127

assignment statement, 20
attribute, 190

BeautifulSoup, 150, 153
binary �le, 152
bisection, debugging by, 64
body, 39, 47, 53, 58
bool type, 31
boolean expression, 31, 39
boolean operator, 70
bracket

squiggly, 107
bracket operator, 67, 91, 118
branch, 34, 40
break statement, 58

bug, 15
BY-SA, iv

cache, 194
case-sensitivity, variable names, 28
catch, 88
CC-BY-SA, iv
celsius, 36
central processing unit, 15
chained conditional, 34, 40
character, 67
checksum, 211, 212
choice function, 46
close method, 87, 211
colon, 47
comment, 25, 29
comparable, 117, 126
comparison

string, 70
tuple, 118

comparison operator, 31
compile, 15
composition, 50, 53
compound statement, 32, 40
concatenation, 24, 29, 70, 97

list, 93, 100
condition, 32, 40, 58
conditional

chained, 34, 40
nested, 35, 40

conditional execution, 32
conditional statement, 32, 40
connect function, 171
consistency check, 115
constraint, 190
continue statement, 59
contributors, 221

226 Index

conversion
type, 44

copy
slice, 69, 93
to avoid aliasing, 102

count method, 73
counter, 64, 70, 76, 82, 109
counting and looping, 70
CPU, 15
Creative Commons License, iv
curl, 153
cursor, 190
cursor function, 171

data structure, 125, 126
database, 169

indexes, 169
database browser, 190
database normalization, 190
debugging, 28, 38, 52, 75, 87, 101, 114,

125
by bisection, 64

decorate-sort-undecorate pattern, 119
decrement, 57, 64
def keyword, 47
de�nition

function, 47
del operator, 95
deletion, element of list, 94
delimiter, 97, 104
deterministic, 45, 53
development plan

random walk programming, 126
dict function, 107
dictionary, 107, 115, 121

looping with, 111
traversal, 121

directory, 203
current, 211
cwd, 211
working, 204, 211

divisibility, 24
division

�oating-point, 22
�oor, 22, 39

dot notation, 46, 53, 72
DSU pattern, 119, 126
duplicate, 212

element, 91, 104
element deletion, 94
ElementTree, 156, 166

�nd, 156
�ndall, 156
fromstring, 156
get, 156

elif keyword, 34
ellipses, 47
else keyword, 33
email address, 121
empty list, 91
empty string, 76, 97
encapsulation, 70
end of line character, 88
equivalence, 99
equivalent, 104
error

runtime, 28, 39
semantic, 20, 28
shape, 125
syntax, 28

error message, 20, 28
evaluate, 23
exception, 28

IndexError, 68, 92
IOError, 86
KeyError, 108
Over�owError, 39
TypeError, 67, 69, 74, 118
ValueError, 25, 120

exists function, 204
experimental debugging, 125
expression, 22, 23, 29

boolean, 31, 39
extend method, 94
eXtensible Markup Language, 167

fahrenheit, 36
False special value, 31
�le, 79

Index 227

open, 80
reading, 82
writing, 87

�le handle, 80
�le name, 203
�lter pattern, 83
�ndall, 131
�ag, 76
�oat function, 44
�oat type, 19
�oating-point, 29
�oating-point division, 22
�oor division, 22, 29, 39
�ow control, 147
�ow of execution, 49, 53, 58
folder, 203
for loop, 68, 92
for statement, 60
foreign key, 190
format operator, 74, 76
format sequence, 74, 76
format string, 74, 76
Free Documentation License, GNU,

220, 221
frequency, 109

letter, 128
fruitful function, 50, 53
function, 47, 53

choice, 46
connect, 171
cursor, 171
dict, 107
exists, 204
�oat, 44
getcwd, 203
int, 44
len, 68, 108
list, 96
log, 46
open, 80, 86
popen, 211
randint, 45
random, 45
raw input, 25
repr, 88

reversed, 125
sorted, 125
sqrt, 46
str, 44
tuple, 117

function argument, 49
function call, 43, 53
function de�nition, 47, 48, 53
function object, 48
function parameter, 49
function, fruitful, 50
function, math, 46
function, reasons for, 52
function, trigonometric, 46
function, void, 50

gather, 126
geocoding, 160
get method, 109
getcwd function, 203
GNU Free Documentation License,

220, 221
Google, 160

map, 193
page rank, 195

greedy, 131, 140, 149
greedy matching, 140
grep, 139, 140
guardian pattern, 37, 40, 76

hardware, 3
architecture, 3

hash function, 115
hash table, 108
hashable, 117, 124, 126
hashing, 212
hashtable, 115
header, 47, 53
high-level language, 15
histogram, 109, 115
HTML, 150

identical, 104
identity, 99
idiom, 101, 110, 112
if statement, 32

228 Index

image
jpg, 145

immutability, 69, 70, 76, 99, 117, 124
implementation, 109, 115
import statement, 53
in operator, 70, 92, 108
increment, 57, 64
indentation, 47
index, 67, 76, 91, 104, 107, 190

looping with, 92
negative, 68
slice, 69, 93
starting at zero, 67, 92

IndexError, 68, 92
in�nite loop, 58, 64
initialization (before update), 57
int function, 44
int type, 19
integer, 29
interactive mode, 6, 15, 21, 51
interpret, 15
invocation, 72, 76
IOError, 86
is operator, 98
item, 76, 91

dictionary, 115
item assignment, 70, 92, 118
item update, 93
items method, 121
iteration, 57, 65

JavaScript Object Notation, 157, 166
join method, 97
jpg, 145
JSON, 157, 166

key, 107, 115
key-value pair, 107, 115, 121
keyboard input, 24
KeyError, 108
keys method, 112
keyword, 21, 29

def, 47
elif, 34
else, 33

keyword argument, 119

language
programming, 5

len function, 68, 108
letter frequency, 128
list, 91, 96, 104, 124

as argument, 100
concatenation, 93, 100
copy, 93
element, 91
empty, 91
function, 96
index, 92
membership, 92
method, 94
nested, 91, 93
operation, 93
repetition, 93
slice, 93
traversal, 92, 105

log function, 46
logical key, 190
logical operator, 31, 32
lookup, 115
loop, 58

for, 68, 92
in�nite, 58
maximum, 62
minimum, 62
nested, 110, 115
traversal, 68
while, 57

looping
with dictionaries, 111
with indices, 92
with strings, 70

looping and counting, 70
low-level language, 15
ls (Unix command), 210

machine code, 15
main memory, 15
math function, 46
MD5 algorithm, 212

Index 229

membership
dictionary, 108
list, 92
set, 108

method, 72, 76
append, 94, 100
close, 87, 211
count, 73
extend, 94
get, 109
items, 121
join, 97
keys, 112
pop, 94
read, 211
readline, 211
remove, 95
sort, 94, 101, 118
split, 97, 121
string, 77
values, 108
void, 94

method, list, 94
mnemonic, 26, 29
module, 46, 53

os, 203
random, 45
sqlite3, 171

module object, 46
modulus operator, 24, 29
MP3, 212
mutability, 69, 92, 94, 99, 117, 124

negative index, 68
nested conditional, 35, 40
nested list, 91, 93, 105
nested loops, 110, 115
newline, 25, 81, 87, 88
non-greedy, 149
None special value, 51, 62, 94, 95
normalization, 190
not operator, 32
number, random, 45

OAuth, 162

object, 70, 76, 98, 99, 105
function, 48

open function, 80, 86
operand, 22, 29
operator, 29

and, 32
boolean, 70
bracket, 67, 91, 118
comparison, 31
del, 95
format, 74, 76
in, 70, 92, 108
is, 98
logical, 31, 32
modulus, 24, 29
not, 32
or, 32
slice, 69, 93, 100, 118
string, 24

operator, arithmetic, 22
optional argument, 72, 97
or operator, 32
order of operations, 23, 28
os module, 203
Over�owError, 39

parameter, 49, 53, 100
parentheses

argument in, 43
empty, 47, 72
overriding precedence, 23
parameters in, 50
regular expression, 134, 149
tuples in, 117

parse, 15
parsing

HTML, 150
parsing HTML, 148
pass statement, 33
path, 203

absolute, 204, 211
relative, 204, 212

pattern
decorate-sort-undecorate, 119
DSU, 119

230 Index

�lter, 83
guardian, 37, 40, 76
search, 76
swap, 119

PEMDAS, 23
persistence, 79
pi, 46
pipe, 210, 212
pop method, 94
popen function, 211
port, 153
portability, 16
precedence, 29
primary key, 190
print statement, 16
problem solving, 4, 16
program, 12, 16
programming language, 5
prompt, 16, 25
pseudorandom, 45, 53
Python 3.0, 22, 25
Pythonic, 86, 88

QA, 86, 88
Quality Assurance, 86, 88
quotation mark, 19, 69

radian, 46
randint function, 45
random function, 45
random module, 45
random number, 45
random walk programming, 126
rate limiting, 161
raw input function, 25
re module, 129
read method, 211
readline method, 211
reference, 99, 100, 105

aliasing, 99
regex, 129

character sets(brackets), 133
�ndall, 131
parentheses, 134, 149
search, 129

wild card, 130
regular expressions, 129
relation, 191
relative path, 204
remove method, 95
repetition

list, 93
repr function, 88
return value, 43, 53
reversed function, 125
Romeo and Juliet, 105, 111, 112, 119,

122
rules of precedence, 23, 29
runtime error, 28, 39

sanity check, 115
scaffolding, 115
scatter, 126
script, 10
script mode, 21, 51
search pattern, 76
secondary memory, 16, 79
semantic error, 16, 20, 28
semantics, 16
sequence, 67, 76, 91, 96, 117, 124
Service Oriented Architecture, 167
set membership, 108
shape, 126
shape error, 125
shell, 210, 212
short circuit, 37, 40
sine function, 46
singleton, 117, 126
slice, 76

copy, 69, 93
list, 93
string, 69
tuple, 118
update, 94

slice operator, 69, 93, 100, 118
SOA, 167
socket, 153
sort method, 94, 101, 118
sorted function, 125
source code, 16

Index 231

special value
False, 31
None, 51, 62, 94, 95
True, 31

spider, 153
split method, 97, 121
sqlite3 module, 171
sqrt function, 46
squiggly bracket, 107
statement, 21, 29

assignment, 20
break, 58
compound, 32
conditional, 32, 40
continue, 59
for, 60, 68, 92
if, 32
import, 53
pass, 33
print, 16
try, 86
while, 57

str function, 44
string, 19, 29, 96, 124

comparison, 70
empty, 97
�nd, 130
immutable, 69
method, 72
operation, 24
slice, 69
split, 134
startswith, 130

string method, 77
string representation, 88
string type, 19
swap pattern, 119
syntax error, 28

temperature conversion, 36
text �le, 88
time, 147
time.sleep, 147
traceback, 36, 38, 40
traversal, 68, 76, 109, 111, 119

list, 92
traverse

dictionary, 121
trigonometric function, 46
True special value, 31
try statement, 86
tuple, 117, 124, 127, 191

as key in dictionary, 124
assignment, 119
comparison, 118
in brackets, 124
singleton, 117
slice, 118

tuple assignment, 127
tuple function, 117
type, 19, 29

bool, 31
dict, 107
�le, 79
�oat, 19
int, 19
list, 91
str, 19
tuple, 117

type conversion, 44
TypeError, 67, 69, 74, 118
typographical error, 125

underscore character, 21
Unicode, 173
Unix command

ls, 210
update, 57

item, 93
slice, 94

urllib
image, 145

use before def, 28, 48

value, 19, 29, 98, 99, 115
ValueError, 25, 120
values method, 108
variable, 20, 29

updating, 57
Visualization

232 Index

map, 193
networks, 195
page rank, 195

void function, 50, 53
void method, 94

walk, 212
web

scraping, 148
web service, 160
while loop, 57
whitespace, 39, 52, 87
wild card, 130, 140
working directory, 204

XML, 167

zero, index starting at, 67, 92

